
MOE, Miracles of Engineering

FTC Team 365

2018-19 Control Award

Submission

MOE FTC 365 Engineering Notebook — Rover Ruckus

E1

Introduction

Throughout the design of our robot, we have kept one universal theme in mind.
User Friendliness: The measure of how robust, simple, easy to

maintain, and easy to use a robot is.

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have

tried to keep the number of important components on the robot (sensors,

motors, etc...) to a minimum while still vying to accomplishing our goals in mind.

The result has been a robot that places more importance on intricate algorithms

than sensors.

Our robot does utilize a good number of sensors, but wherever one can be

omitted (for example: a camera rather than a color sensor), we take that option.

This results in less environmental variables that can impact robot performance, as

the robot relies on its algorithms and math to do computation in the place of

sensors that could sometimes provide faulty data.

When driving the robot, we try to keep controls as simple as possible to allow the

driver to focus on making important decisions rather than be distracted or

bothered with the controlling of the robot.

Along with programming for the sake of the robot in competition, we have also

programmed for the sake of learning (such as creating our own Neural Network!)

to involve ourselves in other forms and kinds of programming. For an explanation

on our thought process & more experimental procedures, view the Additional

Summary Information. Also, below most titles will be a listing of notebook pages

grouped together by what stage in the development process they show.

The 6 main sections are as follows:

1. Autonomous Objectives

2. Sensors Used

3. Key Algorithms

4. Driver Controlled Enhancements

5. Autonomous Program Diagrams

6. Additional Summary Information

MOE FTC 365 Engineering Notebook — Rover Ruckus

E2

MOE FTC 365 Engineering Notebook — Rover Ruckus

E3

Table of Contents

1.0 Autonomous Objectives

 1.1 Autonomous Routine..

 1.2 Algorithmic & Programming Objectives..

 5

 5

2.0 Sensors Used

 2.1 Encoders..

 2.2 Inertial Measurement Unit..

 2.3 Logitech Webcam..

 2.4 REV 2m Distance Sensor..

 2.5 Touch Sensor...

 7

 7

 8

 8

 8

3.0 Key Algorithms & Constructs

 3.1 Field Grid & MOEPS...

 3.2 Localization..

 3.2.1 VuMark Localization...

 3.2.2 Distance Sensor Localization..

 3.3 Multithreading...

 3.4 Turning Methods...

 3.5 A* Pathfinding Algorithm & Dijkstra’s Algorithm...................................

 3.5.1 Introduction...

 3.5.2 Setup..

 3.5.3 Implementation...

 3.5.4 Pathfinding Algorithm Error Correction...

 9

 12

 12

 13

 15

 16

 17

 17

 18

 20

 23

MOE FTC 365 Engineering Notebook — Rover Ruckus

E4

 3.5.5 “Rotational Symmetry”..

 3.5.6 Realignment..

 3.6 Error Correction & Fallback Plan B Routines..

 3.6.1 Turn Corrections...

 3.6.2 Distance Sensor Fallback..

 24

 26

 28

 28

 28

4.0 Driver Controlled Enhancements

 4.1 Adjustable Field-Centric Movement..

 4.2 Lander Based Movement...

 4.3 Controls...

 30

 30

 31

5.0 Autonomous Routines

 5.1 Depot Autonomous...

 5.2 Crater Autonomous...

 33

 34

6.0 Additional Summary Information

 6.1 Creating An Artificial Neural Network...

 6.2 Gold Mineral Detection Method...

 6.3 Vuforia Listener...

 6.4 Text-to-Speech...

 36

 40

 43

 44

MOE FTC 365 Engineering Notebook — Rover Ruckus

E5

Autonomous Objectives

The following objectives are what we planned for in our robot’s autonomous

modes.

• Autonomous Routine: (82 pts.)

o Landing – dropping off of the lander (30 pts.)

o Sampling – knocking off the gold mineral (25 pts.)

o Sampled gold mineral placed in depot (2 pts.)

o Claiming – dropping the Team Marker in the depot (15 pts.)

o Parking – ending autonomous in the crater (10 pts.)

• Algorithmic & Programming Objectives:

o Establishing Field Grid & MOEPS (MOE Positioning System)

o Localization

o Multithreading

o Accurate Turning Methods

o Accurate Pathfinding with A* and Dijkstra’s Algorithms

▪ Pathfinding Error Correction

▪ “Rotational Symmetry”

▪ Realignment

o Error Correction & Fallback Plan B Routines

Although not completely relevant in explaining the controls and actions of the

robot, we included additional algorithms and details in our programming process

that we felt to be of importance in the Additional Summary Information.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E6

MOE FTC 365 Engineering Notebook — Rover Ruckus

E7

Sensors Used

Encoders (3)

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the

front-left wheel, while the other is on the front-right wheel.

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for

precise, controlled motion of the lift motor.

Inertial Measurement Unit (IMU) (1)

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that

MOE FTC 365 Engineering Notebook — Rover Ruckus

E8

measures rotation parallel to the ground for accuracy in any turns or rotational movement of

the robot.

Logitech Webcam (1)

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera

allows for the phone to be safely protected within the robot, making sure that nothing goes

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks.

REV 2m Distance Sensor (2)

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction.

The sensor is primarily used for telling distance away from the walls of the field.

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The

sensor is primarily used for telling distance away from the walls of the field.

Touch Sensor (1)

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in

hanging. Since the lift has to have the same starting point across all robot autonomous modes,

a standard starting point is important.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E9

Key Algorithms & Constructs

Field Grid & MOEPS (MOE Positioning System)

Conceptualization and implementation: C7, C8, C13, C14

Due to the importance of the two positioning systems described below in our programming

structures, we have affectionately coined the term MOE Position System, or MOEPS, to

describe the systems.

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72).

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit

= 2 inches.

12 feet = 144 inches = 72 MOE units

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E10

To ease our programming, we made a Java class called PointMap to hold all important (x, y)

points on the field with English names. While programming, we were able to refer to these

names rather than the actual (x, y) coordinate. The following places were labelled as important:

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot

Along with a positional (x, y) global map, we wanted to create an orientational global map to

establish a consistent angle at any point on the map. The angle map was modeled off of the

Unit Circle, which was used as a standard for marking angles on the map.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E11

MOE FTC 365 Engineering Notebook — Rover Ruckus

E12

Localization

See engineering notebook entries: C42, C43, C146, C147, C148

In terms of our programming team, localization means to find out the robot’s exact global (x, y)

position on the field. In this case, the robot would have to find out its global (x, y) position on

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of

the Vuforia image recognition technology and the REV 2m Distance Sensor.

VuMark Localization

When the robot’s webcam sees a

VuMark, the following steps are

taken:

1. Extrapolate horizontal (x) and

vertical (y) distance from the

VuMark using Vuforia

2. Scale the x, y distance into our

2-inch units – this is done by

multiplying the values by the

scalar 1/50

3. Depending on the VuMark,

subtract the x, y values as

appropriate – each VuMark has a

distinct x, y position on the field,

so subtract the robot’s local x, y

position from the VuMark from

the VuMark’s global position

VuMark Localization on the

field

MOE FTC 365 Engineering Notebook — Rover Ruckus

E13

Distance Sensor Localization

Localization using the distance sensor is similar to the VuMark Localization method, but is less

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used

when no VuMarks are available and localization is necessary.

In this case, the following steps are taken: 1. Get vertical and

horizontal distance in inches from wall with distance sensors 2.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E14

Subtract inches from

wall (x, y) position

3. Resulting (x, y)

coordinate is the

robot’s global location

MOE FTC 365 Engineering Notebook — Rover Ruckus

E15

Multithreading

Implementation of lift mechanism: C140

Implementation of realignment: C58, C59

Multithreading is a technique by which a single set of code can be used by several processors at

different stages of execution. In other words, a program can have multiple sets of instructions

running at the same time. With multithreading, the robot is able to do more than one task at

any given time. Since our robot is trying to accomplish all standard autonomous points, time is

often cut close to 30 seconds.

Without the use of multithreading, the robot’s autonomous routine would have to speed up

its motors significantly to meet the allotted 30 seconds. This speeding up results in less

accuracy, resulting in an autonomous that is more prone to error.

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally

use our own threads or pull from other threads for the following purposes:

• Bringing down the lift mechanism used for dropping/hanging

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information

for more details)

We also used Atomic variables for thread-safe operation. When a global variable is dealt with

between 2 or more threads, there is always the danger of it leaking data when operations on it

are done at the same time. Since using a raw variable without synchronization or any other

standard is considered bad practice, we decided to use Atomic variables for thread-safe

operation. This way, when communicating between the Main Robot thread and the Vuforia

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of

data between the two threads.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E16

Turning Methods

Conceptualization and implementation: C31, C32

Turning in autonomous has to be precise to the degree for repeatable results, which is why

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we

are within the correct angle.

Field-Centric Turning & Robot-Centric Turning

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the

robot turns to a given global angle on the field.

In robot-centric turning the robot turns to a given angle relative to itself.

Robot-centric vs. Field-centric Turning:

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the

orientation, the robot will always turn to the same 90° mark in field-centric turning.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E17

A* Pathfinding Algorithm & Dijkstra’s Algorithm

Conceptualization and implementation of old linear pathfinding algorithm (not

used on robot): C42, C43

Conceptualization and implementation: C46, C47

Implementation and testing: C50, C51

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93

Radius and size reductions: C97, C98, C99

2nd Stage Debugging: C104, C105

8-Directional Movement: C128, C129

3rd Stage Testing: C146

“Rotational Symmetry”: C150, C151

Introduction

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its

destination. In many autonomous pathings, whenever there is a slight disturbance, the

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on

the field and calculates on its own how to reach the destination.

The A* Pathfinding Algorithm (pronounced A Star) is similar to the popular Dijkstra’s Algorithm,

which is used for finding the shortest paths between nodes in a graph. The only difference

between the two is that the A* Algorithm utilizes a “heuristic function”, or an approximation

function, to approximate a faster solution to Dijkstra’s algorithm. Dijkstra’s algorithm checks

many more cases than the A* Algorithm, therefore taking longer to arrive at a similar answer.

Since the field we are using is 72x72 (5184) nodes, we wanted to guarantee that processing

speed would be optimal in all situations and have two approaches available to use. The

algorithms commonly deal with graphs shown like the one below, but had to be specially

adapted in our case to work with a 2D grid.

Visual representation of traditional graph in computer science:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E18

To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity

(when using lists) of O(N2) where N = number of nodes on the graph, while A* has a time

complexity of O(bd), where b = branching factor and d = depth of the solution on the search

tree. Note that the time complexity of A* is worse when using a very expensive heuristic cost

function, but we are using the simple Euclidean distance, or the distance formula:

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B.

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and

Northwest.

Setup

To utilize the A* and Dijkstra algorithms, we needed to first setup a graph. To accomplish this,

we took a 2D image of the field from Game Manual 2. After that, we wrote a Python script

(utilizing the PIL imaging library) to go through the image, converting it to points we deemed as

barriers (white) and points we deemed as free space the robot could travel on (black). This

conversion was done through a color-based threshold. In essence, the gray parts of the map

were free space while the other colors were barriers. The output was an image with the

converted points as well as a 72x72 2-dimensional array that we would be able to use as our

graph for the A* algorithm. Also, the image was flipped because we wanted [0,0] of the 2D

array to be the corner of the red depot, and [71,71] of the 2D array to be the corner of the blue

depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E19

Mapped FTC Field (Visual Representation of Array)

 1 (or white) = point a robot cannot travel on

 0 (or black) = point a robot can travel on

MOE FTC 365 Engineering Notebook — Rover Ruckus

E20

The original conversion had some errors, because places (depot, lines near the lander, etc...) were

marked in white when they should have been open space. To fix this, we manually changed some values

in the array. Since most of the conversion work was done by the Python script, this only took a few

minutes.

The above image is what the output array looked like visually. The barriers shown in the image above

are represented by 1s, while the free space shown in the image above are represented by 0s.

Implementation

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a

simulation to show the A* Algorithm’s path from any Point A to Point B visually:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E21

Initial Simulation

As complications with the algorithm increased, there was a need for a better simulation that more

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the

the robot (the green square), step by step, moving through the field.

Screenshot of Final Simulation

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

MOE FTC 365 Engineering Notebook — Rover Ruckus

E22

https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

To now use the algorithm in practice, we had to convert the results into a usable format by writing an

algorithm to do so.

Path Conversion Algorithm

(Input) - Original Pathfinding Results:
A series of points describing each point to go
from point A to point B.

For example, getting from (0,0) to (5,5) could be:
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) -->
(5, 4) --> (5, 5)

(Output) - Usable Results:
The number of inches in each direction the robot
has to go, in order (each unit is 2 inches).

For example, getting from (0,0) to (5,5) could be:
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2
in.
--> FORWARD 8 in.

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated

into movements for the robot based on encoder ticks. The result of this extensive process is a robust

and repeatable movement system that allows the robot to figure out its own path when given two

points on the field. This simplifies the process of adjusting and programming autonomous, as well as

allowing for a more robust and dynamic movement system.

Pathfinding Algorithm Error Correction

MOE FTC 365 Engineering Notebook — Rover Ruckus

E23

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few

issues we had to fix in order of importance.

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while

the robot actually comprised at least a circle of many points with radius about 10 inches.

This led to the edges of the robot crashing into parts of the field (lander, crater,

sampling, etc...) while its center thought it was following the pathfinding algorithms as a

single small point.

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end

destination due to slight turning while making up, down, left, and right movements.

Error #1 – Size Corrections

Conceptualization and implementation: C55, C97

Second iteration: C98, C99

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the

robot as a single point, we treated it as a collection of multiple points – when put together,

these points would form the robot rather than one small point.

Error #2 – Turn Corrections

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A*

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A*

algorithm.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E24

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct

angle by again utilizing the gyro to turn back into position.

“Rotational Symmetry”

Conceptualization and Implementation: C150, C151

Another feature that we added to the pathfinding algorithm is the idea of “rotational

symmetry”. In other words, a given set of output instructions can be rotated by certain number

of degrees while still preserving the relative directions of each movement.

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of

robot movements. Since moving forwards and backwards is always faster than strafing,

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and

rotate the pathing instructions. The robot can then quickly turn and apply the rotated

instructions to allow for more forwards and backwards movements, resulting in a more

robust movement.

Examples of rotations done on set of output instructions:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E25

The algorithm is accomplished by setting a numerical value to each of the directions in

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This

simple numbering pattern makes rotation much simpler than writing each direction’s rotation

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes

2).

Visualization of Direction to Number mapping, along with degrees associated with rotations:

This system’s simplicity becomes apparent when put into practice. For example, if an

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value,

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90°

clockwise rotation from North.

Realignment

MOE FTC 365 Engineering Notebook — Rover Ruckus

E26

Conceptualization and Implementation: C58, C59

As there is always a chance for error, such as another robot or debris in the way of a robot, a

given robot might be knocked out of its planned path. This is another application for the

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that

it sees a new VuMark, the robot is able to get back on path.

The diagram below illustrates this process:

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point

a. Pathfinding Algorithms calculate a path to the destination (#3)

b. Robot follows the pathing with encoders (blue arrows)

2. The robot is knocked off of its pathing by debris

MOE FTC 365 Engineering Notebook — Rover Ruckus

E27

a. A new VuMark is seen and the robot stops its original pathing (blue

arrows) and relocalizes, figuring out its new (x, y) point

b. Pathfinding Algorithms calculate a path to the destination (#3)

c. Robot follows the pathing with encoder (purple arrows)

3. Destination is reached

MOE FTC 365 Engineering Notebook — Rover Ruckus

E28

Error Correction & Fallback Plan B Routines

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental

goal of autonomous is to have consistent, reproducible results, we try to better handle some

errors that may result in a deviation from any planned autonomous route.

• Turn Corrections

• Distance Sensor Fallback

Turn Corrections

Implementation: C58, C59

In many of the routines and paths taken during autonomous, due to the nature of our

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient,

results in a faulty autonomous. To cut back on this, we define a given angle error range for any

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts

what it is doing to turn back into proper position.

The diagram below shows the turn correction process.

Distance Sensor Fallback

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback

when they produce errors. When getting readings in the middle of autonomous, a distance

MOE FTC 365 Engineering Notebook — Rover Ruckus

E29

sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed

point to plug into the Pathfinding Algorithms rather than a more accurate point from the

distance sensors.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E30

Driver Controlled Enhancements

Adjustable Field-Centric Movement

Conceptualization and implementation: C130, C131, C141

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this,

we are able to use field-centric motion rather than robot-centric motion. For the ease of the

driver, we make all movements relative to the field rather than relative to the robot.

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y

This diagram represents the rotation of axes that underlies the principles in field centric

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a

custom 0° point for the robot.

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value

for FWD (forward), STR (strafe), or ROT (rotation).

MOE FTC 365 Engineering Notebook — Rover Ruckus

E31

The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so

that field-centric movement occurs.

Lander Based Movement

Conceptualization and implementation: C141

Our robot also has “lander specialized” movement that allows for fine turning before hanging

the robot. The D-pad allows for smaller adjustments in four-directional movement

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller

adjustments in turning to fix orientation before raising the lift to hang.

Controls

Gamepad 1

Left Joystick: Field-centric movement in all directions

Right Joystick: Rotational movement (turns)

A: Reset 0° point (forward heading) for field-centric movement

Left Bumper: Turn slowly left (see Lander Based Movement)

Right Bumper: Turn slowly right (see Lander Based Movement)

D-Pad: (see Lander Based Movement)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E32

UP → Move slowly forward

DOWN → Move slowly backward

LEFT → Strafe slowly left

RIGHT → Strafe slowly right

MOE FTC 365 Engineering Notebook — Rover Ruckus

E33

Autonomous Routines

Conceptualization and testing of routine: C76

Iterative improvements, testing, and debugging: C84, C85

Testing environment fabrication: C104

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122

Testing and evaluations: C140, C141, C145

MOE FTC 365 Engineering Notebook — Rover Ruckus

E34

The image above represents our autonomous routine for the depot starting points. For the

crater starting points, we only sample the gold mineral. We plan on executing the following

steps for the depot starting points (the crater starting points are only the first two steps):

1. Landing & Detecting gold mineral

2. Travelling to and knocking off gold mineral

3. Travelling to depot

4. Deposit the Team Marker and leave gold mineral

5. Travel to crater & extend arm into crater

Initialization

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map.

2. Initialize REV IMU sensor

3. Initialize Vuforia

4. Initialize TensorFlow

5. Reset Team Marker Servo to position 1

6. Reset Crater Extension Arm to position 1

1. Landing & Detecting gold mineral (30 pts.)

1. Use linear actuator to move lift up for given # of encoder tics

a. The robot touches the floor and the claw goes above the top of the handle on

the lander

2. Using multithreading, lower the lift back to its starting position

a. (see Multithreading in Key Algorithms)

b. The program continues on without waiting for the process to finish because of

the multithreading

3. Turn ~70° to see 2 minerals and decide which is gold

a. (see Gold Mineral Detection Method in Additional Summary Information)

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or

center

2. Landing & Detecting gold mineral (25 pts.)

1. Move forward appropriate # of inches to knock off gold mineral from its starting

position

2. Continue moving forward to safely clear other 2 silver minerals

3. Travelling to depot

1. Turn appropriate number of degrees to face the depot

2. Move forward appropriate # of inches to reach the depot

MOE FTC 365 Engineering Notebook — Rover Ruckus

E35

a. Note that the gold mineral is kept in control of the robot through the metal plate

on its front – similar to a bulldozer

4. Deposit the Team Marker and leave gold mineral (17 pts.)

1. Turn appropriate # of degrees for front of robot to face the front/back wall

2. Localize and figure out (x, y) posi8tion on the MOEPS global field grid by using distance

sensors

a. (See Distance Sensor Localization in Localization)

b. If the distance sensors have an error in measurement, fallback to Plan B

3. Turn appropriate number of degrees for left side of robot to face corner of field

4. Drop off Team Marker by setting Team Marker servo to position 0

5. Calculate path to crater using Pathfinding Algorithms

a. Plan A: Use (x, y) position from distance sensors

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A

c. (see A* Pathfinding Algorithm & Dijkstra’s Algorithm)

5. Travel to crater & extend arm into crater (10 pts.)

1. Turn ~90° right for the back to face the crater

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation

a. (see “Rotational Symmetry” in A* Pathfinding Algorithm & Dijkstra’s Algorithm)

3. Follow pathing to reach crater

4. Extend arm

5. Drive backwards to guarantee arm is in crater

MOE FTC 365 Engineering Notebook — Rover Ruckus

E36

Additional Summary Information

Creating An Artificial Neural Network (ANN)

Conceptualization and implementation: C110, C111, C112, C113, C114, C115

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network

with TensorFlow that could distinguish the left, center, or right position of the gold in the

sampling minerals.

Choosing the Correct Structure

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a

commonly used technique to train a neural network based around gradient descent.

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in

each hidden layer. The final output has 3 possibilities. This neural network requires less training

data because the problem at hand is fundamentally clear in terms of processing; there are no

MOE FTC 365 Engineering Notebook — Rover Ruckus

E37

complex edge detections required. All the neural network has to do is distinguish between

yellow and white and their locations in the images.

Acquiring Training Data & Preprocessing (Total of 48 Images)

Key ideas in images for the neural network:

• Changed background of images to show background does not matter

• Changed lighting of images to show lighting does not matter

• Changed tilt of images to show tilt does not matter

• Did not change order of minerals to show only ordering of minerals matter

NOTE: The preprocessing was automated using Python scripts to save time.

The reason the images’ resolutions were reduced was due to the fact that training the network

would require more time. Although training the network at full resolution would be fine, it

MOE FTC 365 Engineering Notebook — Rover Ruckus

E38

would possibly take a few minutes, and this can get cumbersome when refining and tweaking

the data. We felt predictions could be made just as well at reduced resolution.

The process of converting to a Base-10 representation of hex #RRGGBB values:

1. Take individual R, G, B (0 – 255) values of each pixel

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB)

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number

All the data was saved to a .txt file to be trained on later.

Training & Accuracy of Neural Network

Because we reduced the resolutions of the images in the preprocessing, training time for the 48

images was incredibly short: 5-15 seconds.

After training a successful model, here were our results.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E39

As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an

indication of over-fitting the training data, but the network was able to successfully predict our

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other

words, when we gave the network new data, it was able to successfully determine whether the

gold mineral was in the left, right, or center.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E40

Gold Mineral Detection Method

Conceptualization and OpenCV: C63, C64, C70, C76, C77

OpenCV Testing: C84, C85, C105, C106

Official TensorFlow Model: C110, C111

Custom neural network: C112, C113, C114

Final decision of official TensorFlow Model: C115

To finally end up with our implementation for the detection of the gold mineral, we went over

3 options: OpenCV, our own neural network, and the official TensorFlow Lite model for

sampling. We felt that using color sensor would be too cumbersome given that we have a

camera on the robot which we can do analysis on.

The reason we decided not to use OpenCV was because it could not run easily in parallel with

Vuforia, and had too much overhead for the problem it was solving. We decided not to use our

custom neural network because it did not have additional output like x position or estimated

angle, unlike the offical TensorFlow neural network. In the end, we went with the official

version for its robustness and availability of options.

Our TensorFlow Neural Network:

Official TensorFlow Neural Network:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E41

Gold Mineral Decision Algorithm

See engineering notebook entries: C121, C122, C128, C129, C130

Since our robot was only able to see two minerals on the field, we had to write an algorithm to

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was

on the right of the 2 right minerals, it would be on the right.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E42

MOE FTC 365 Engineering Notebook — Rover Ruckus

E43

Vuforia Listener

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.)

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique

approach in capturing these events. In Vuforia, there is a class known as the

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark

when one knows exactly when they will see a VuMark. However, due to the variable nature of

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe

and efficient way.

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the

methods in the default listener, we realized that there was no convenient method to realize

when a new VuMark was found, so we modified one of the existing methods to let us know

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be

notified properly.

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program

would work consistently on multiple threads while being able to share information between the

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of

information between the threads. If we did not, there is the slight chance that when two

threads modify the same variable at the same time, there could be a loss of information. The

usage of Atomic variables notifies the robot in the middle of following the path found by the

Pathfinding Algorithms to stop what it is doing and realign against the VuMark.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E44

Text-To-Speech (TTS)

For additional fun and utility, we incorporated the Google Text-to-Speech technology that

allows text to be read aloud in a human-like fashion.

On the field, our robot likes to let us know how it is doing through a variety of phrases,

including when it is initialized. Certain phrases include:

• “Initialized Vuforia”

• “Initialized Tensor Flow”

• “Initialization Ready”

• “Initialized Gyro”

Over time, hearing these phrases can become cumbersome. However, our robot likes to spice

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism

and loyalty to our team. Certain phrases it uses include:

• “Go MOE”

• “Whooo!”

• “Hi _____” (where _____ may be someone’s name)

o Note: this is pre-programmed, we have not yet integrated the facial recognition

technology for the robot to detect people on its own

Our robot also has a fondness for music, which it may play on or off the field. More than

anything else, our robot’s personality makes interacting with it more interesting and fun! :)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E45

MOE, Miracles of Engineering

FTC Team 365

2018-19 Control Award

Submission

MOE FTC 365 Engineering Notebook — Rover Ruckus

E46

Introduction

Throughout the design of our robot, we have kept one universal theme in mind.
User Friendliness: The measure of how robust, simple, easy to

maintain, and easy to use a robot is.

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have

tried to keep the number of important components on the robot (sensors,

motors, etc...) to a minimum while still vying to accomplishing our goals in mind.

The result has been a robot that places more importance on intricate algorithms

than sensors.

Our robot does utilize a good number of sensors, but wherever one can be

omitted (for example: a camera rather than a color sensor), we take that option.

This results in less environmental variables that can impact robot performance, as

the robot relies on its algorithms and math to do computation in the place of

sensors that could sometimes provide faulty data.

When driving the robot, we try to keep controls as simple as possible to allow the

driver to focus on making important decisions rather than be distracted or

bothered with the controlling of the robot.

Along with programming for the sake of the robot in competition, we have also

programmed for the sake of learning (such as creating our own Neural Network!)

to involve ourselves in other forms and kinds of programming. For an explanation

on our thought process & more experimental procedures, view the Additional

Summary Information. Also, below most titles will be a listing of notebook pages

grouped together by what stage in the development process they show.

The 6 main sections are as follows:

1. Autonomous Objectives

2. Sensors Used

3. Key Algorithms

4. Driver Controlled Enhancements

5. Autonomous Program Diagrams

6. Additional Summary Information

MOE FTC 365 Engineering Notebook — Rover Ruckus

E47

Table of Contents

1.0 Autonomous Objectives

 1.1 Autonomous Routine..

 1.2 Algorithmic & Programming Objectives..

 5

 5

2.0 Sensors Used

 2.1 Encoders..

 2.2 Inertial Measurement Unit..

 2.3 Logitech Webcam..

 2.4 REV 2m Distance Sensor..

 2.5 Touch Sensor...

 6

 6

 7

 7

 7

3.0 Key Algorithms & Constructs

 3.1 Field Grid & MOEPS...

 3.2 Localization..

 3.2.1 VuMark Localization...

 3.2.2 Distance Sensor Localization..

 3.3 Multithreading...

 3.4 Turning Methods...

 3.5 A* Pathfinding Algorithm & Dijkstra’s Algorithm...................................

 3.5.1 Introduction...

 3.5.2 Setup..

 3.5.3 Implementation...

 3.5.4 Pathfinding Algorithm Error Correction...

 8

 11

 11

 12

 14

 15

 16

 16

 17

 19

 22

MOE FTC 365 Engineering Notebook — Rover Ruckus

E48

 3.5.5 “Rotational Symmetry”..

 3.5.6 Realignment...

 3.6 Error Correction & Fallback Plan B Routines..

 3.6.1 Turn Corrections...

 3.6.2 Distance Sensor Fallback..

 3.7 Sampling Algorithm...

 23

 25

 28

27

 27

 27

 29

4.0 Driver Controlled Enhancements

 4.1 Adjustable Field-Centric Movement..

 4.2 Lander Based Movement...

 4.3 Controls...

 32

 33

 33

5.0 Autonomous Routines

 5.1 Depot Autonomous...

 5.2 Crater Autonomous...

 35

 36

6.0 Additional Summary Information

 6.1 Creating An Artificial Neural Network...

 6.2 Gold Mineral Decision Algorithm...

 6.3 Vuforia Listener...

 6.4 Text-to-Speech...

 38

 42

 43

 44

MOE FTC 365 Engineering Notebook — Rover Ruckus

E49

Autonomous Objectives

The following objectives are what we planned for in our robot’s autonomous

modes.

• Autonomous Routine: (82 pts.)

o Landing – dropping off of the lander (30 pts.)

o Sampling – knocking off the gold mineral (25 pts.)

o Sampled gold mineral placed in depot (2 pts.)

o Claiming – dropping the Team Marker in the depot (15 pts.)

o Parking – ending autonomous in the crater (10 pts.)

• Algorithmic & Programming Objectives:

o Establishing Field Grid & MOEPS (MOE Positioning System)

o Localization

o Multithreading

o Accurate Turning Methods

o Accurate Pathfinding with A* and Dijkstra’s Algorithms

▪ Pathfinding Error Correction

▪ “Rotational Symmetry”

▪ Realignment

o Error Correction & Fallback Plan B Routines

Although not completely relevant in explaining the controls and actions of the

robot, we included additional algorithms and details in our programming process

that we felt to be of importance in the Additional Summary Information.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E50

Sensors Used

Encoders (3)

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the

front-left wheel, while the other is on the front-right wheel.

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for

precise, controlled motion of the lift motor.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E51

Inertial Measurement Unit (IMU) (1)

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that

measures rotation parallel to the ground for accuracy in any turns or rotational movement of

the robot.

Logitech Webcam (1)

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera

allows for the phone to be safely protected within the robot, making sure that nothing goes

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks.

REV 2m Distance Sensor (2)

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction.

The sensor is primarily used for telling distance away from the walls of the field.

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The

sensor is primarily used for telling distance away from the walls of the field.

Touch Sensor (1)

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in

hanging. Since the lift has to have the same starting point across all robot autonomous modes,

a standard starting point is important.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E52

Key Algorithms & Constructs

Field Grid & MOEPS (MOE Positioning System)

Conceptualization and implementation: C7, C8, C13, C14

Due to the importance of the two positioning systems described below in our programming

structures, we have affectionately coined the term MOE Position System, or MOEPS, to

describe the systems.

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72).

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit

= 2 inches.

12 feet = 144 inches = 72 MOE units

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E53

To ease our programming, we made a Java class called PointMap to hold all important (x, y)

points on the field with English names. While programming, we were able to refer to these

names rather than the actual (x, y) coordinate. The following places were labelled as important:

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot

Along with a positional (x, y) global map, we wanted to create an orientational global map to

establish a consistent angle at any point on the map. The angle map was modeled off of the

Unit Circle, which was used as a standard for marking angles on the map.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E54

MOE FTC 365 Engineering Notebook — Rover Ruckus

E55

Localization

See engineering notebook entries: C42, C43, C146, C147, C148

In terms of our programming team, localization means to find out the robot’s exact global (x, y)

position on the field. In this case, the robot would have to find out its global (x, y) position on

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of

the Vuforia image recognition technology and the REV 2m Distance Sensor.

VuMark Localization

When the robot’s webcam sees a

VuMark, the following steps are

taken:

1. Extrapolate horizontal (x) and

vertical (y) distance from the

VuMark using Vuforia

2. Scale the x, y distance into our

2-inch units – this is done by

multiplying the values by the

scalar 1/50

3. Depending on the VuMark,

subtract the x, y values as

appropriate – each VuMark has a

distinct x, y position on the field,

so subtract the robot’s local x, y

position from the VuMark from

the VuMark’s global position

VuMark Localization on the

field

MOE FTC 365 Engineering Notebook — Rover Ruckus

E56

Distance Sensor Localization

Localization using the distance sensor is similar to the VuMark Localization method, but is less

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used

when no VuMarks are available and localization is necessary.

In this case, the following steps are taken: 1. Get vertical and

horizontal distance in inches from wall with distance sensors 2.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E57

Subtract inches from

wall (x, y) position

3. Resulting (x, y)

coordinate is the

robot’s global location

MOE FTC 365 Engineering Notebook — Rover Ruckus

E58

Multithreading

Implementation of lift mechanism: C140

Implementation of realignment: C58, C59

Multithreading is a technique by which a single set of code can be used by several processors at

different stages of execution. In other words, a program can have multiple sets of instructions

running at the same time. With multithreading, the robot is able to do more than one task at

any given time. Since our robot is trying to accomplish all standard autonomous points, time is

often cut close to 30 seconds.

Without the use of multithreading, the robot’s autonomous routine would have to speed up

its motors significantly to meet the allotted 30 seconds. This speeding up results in less

accuracy, resulting in an autonomous that is more prone to error.

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally

use our own threads or pull from other threads for the following purposes:

• Bringing down the lift mechanism used for dropping/hanging

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information

for more details)

We also used Atomic variables for thread-safe operation. When a global variable is dealt with

between 2 or more threads, there is always the danger of it leaking data when operations on it

are done at the same time. Since using a raw variable without synchronization or any other

standard is considered bad practice, we decided to use Atomic variables for thread-safe

operation. This way, when communicating between the Main Robot thread and the Vuforia

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of

data between the two threads.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E59

Turning Methods

Conceptualization and implementation: C31, C32

Turning in autonomous has to be precise to the degree for repeatable results, which is why

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we

are within the correct angle.

Field-Centric Turning & Robot-Centric Turning

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the

robot turns to a given global angle on the field.

In robot-centric turning the robot turns to a given angle relative to itself.

Robot-centric vs. Field-centric Turning:

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the

orientation, the robot will always turn to the same 90° mark in field-centric turning.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E60

A* Pathfinding Algorithm & Dijkstra’s Algorithm

Conceptualization and implementation of old linear pathfinding algorithm (not

used on robot): C42, C43

Conceptualization and implementation: C46, C47

Implementation and testing: C50, C51

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93

Radius and size reductions: C97, C98, C99

2nd Stage Debugging: C104, C105

8-Directional Movement: C128, C129

3rd Stage Testing: C146

“Rotational Symmetry”: C150, C151

Introduction

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its

destination. In many autonomous pathings, whenever there is a slight disturbance, the

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on

the field and calculates on its own how to reach the destination.

The A* Pathfinding Algorithm (pronounced A Star) is similar to the popular Dijkstra’s Algorithm,

which is used for finding the shortest paths between nodes in a graph. The only difference

between the two is that the A* Algorithm utilizes a “heuristic function”, or an approximation

function, to approximate a faster solution to Dijkstra’s algorithm. Dijkstra’s algorithm checks

many more cases than the A* Algorithm, therefore taking longer to arrive at a similar answer.

Since the field we are using is 72x72 (5184) nodes, we wanted to guarantee that processing

speed would be optimal in all situations and have two approaches available to use. The

algorithms commonly deal with graphs shown like the one below, but had to be specially

adapted in our case to work with a 2D grid.

Visual representation of traditional graph in computer science:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E61

To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity

(when using lists) of O(N2) where N = number of nodes on the graph, while A* has a time

complexity of O(bd), where b = branching factor and d = depth of the solution on the search

tree. Note that the time complexity of A* is worse when using a very expensive heuristic cost

function, but we are using the simple Euclidean distance, or the distance formula:

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B.

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and

Northwest.

Setup

To utilize the A* and Dijkstra algorithms, we needed to first setup a graph. To accomplish this,

we took a 2D image of the field from Game Manual 2. After that, we wrote a Python script

(utilizing the PIL imaging library) to go through the image, converting it to points we deemed as

barriers (white) and points we deemed as free space the robot could travel on (black). This

conversion was done through a color-based threshold. In essence, the gray parts of the map

were free space while the other colors were barriers. The output was an image with the

converted points as well as a 72x72 2-dimensional array that we would be able to use as our

graph for the A* algorithm. Also, the image was flipped because we wanted [0,0] of the 2D

array to be the corner of the red depot, and [71,71] of the 2D array to be the corner of the blue

depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E62

Mapped FTC Field (Visual Representation of Array)

 1 (or white) = point a robot cannot travel on

 0 (or black) = point a robot can travel on

MOE FTC 365 Engineering Notebook — Rover Ruckus

E63

The original conversion had some errors, because places (depot, lines near the lander, etc...) were

marked in white when they should have been open space. To fix this, we manually changed some values

in the array. Since most of the conversion work was done by the Python script, this only took a few

minutes.

The above image is what the output array looked like visually. The barriers shown in the image above

are represented by 1s, while the free space shown in the image above are represented by 0s.

Implementation

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a

simulation to show the A* Algorithm’s path from any Point A to Point B visually:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E64

Initial Simulation

As complications with the algorithm increased, there was a need for a better simulation that more

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the

the robot (the green square), step by step, moving through the field.

Screenshot of Final Simulation

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

MOE FTC 365 Engineering Notebook — Rover Ruckus

E65

https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

To now use the algorithm in practice, we had to convert the results into a usable format by writing an

algorithm to do so.

Path Conversion Algorithm

(Input) - Original Pathfinding Results:
A series of points describing each point to go
from point A to point B.

For example, getting from (0,0) to (5,5) could be:
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) -->
(5, 4) --> (5, 5)

(Output) - Usable Results:
The number of inches in each direction the robot
has to go, in order (each unit is 2 inches).

For example, getting from (0,0) to (5,5) could be:
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2
in.
--> FORWARD 8 in.

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated

into movements for the robot based on encoder ticks. The result of this extensive process is a robust

and repeatable movement system that allows the robot to figure out its own path when given two

points on the field. This simplifies the process of adjusting and programming autonomous, as well as

allowing for a more robust and dynamic movement system.

Pathfinding Algorithm Error Correction

MOE FTC 365 Engineering Notebook — Rover Ruckus

E66

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few

issues we had to fix in order of importance.

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while

the robot actually comprised at least a circle of many points with radius about 10 inches.

This led to the edges of the robot crashing into parts of the field (lander, crater,

sampling, etc...) while its center thought it was following the pathfinding algorithms as a

single small point.

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end

destination due to slight turning while making up, down, left, and right movements.

Error #1 – Size Corrections

Conceptualization and implementation: C55, C97

Second iteration: C98, C99

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the

robot as a single point, we treated it as a collection of multiple points – when put together,

these points would form the robot rather than one small point.

Error #2 – Turn Corrections

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A*

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A*

algorithm.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E67

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct

angle by again utilizing the gyro to turn back into position.

“Rotational Symmetry”

Conceptualization and Implementation: C150, C151

Another feature that we added to the pathfinding algorithm is the idea of “rotational

symmetry”. In other words, a given set of output instructions can be rotated by certain number

of degrees while still preserving the relative directions of each movement.

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of

robot movements. Since moving forwards and backwards is always faster than strafing,

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and

rotate the pathing instructions. The robot can then quickly turn and apply the rotated

instructions to allow for more forwards and backwards movements, resulting in a more

robust movement.

Examples of rotations done on set of output instructions:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E68

The algorithm is accomplished by setting a numerical value to each of the directions in

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This

simple numbering pattern makes rotation much simpler than writing each direction’s rotation

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes

2).

Visualization of Direction to Number mapping, along with degrees associated with rotations:

This system’s simplicity becomes apparent when put into practice. For example, if an

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value,

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90°

clockwise rotation from North.

Realignment

MOE FTC 365 Engineering Notebook — Rover Ruckus

E69

Conceptualization and Implementation: C58, C59

As there is always a chance for error, such as another robot or debris in the way of a robot, a

given robot might be knocked out of its planned path. This is another application for the

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that

it sees a new VuMark, the robot is able to get back on path.

The diagram below illustrates this process:

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point

a. Pathfinding Algorithms calculate a path to the destination (#3)

b. Robot follows the pathing with encoders (blue arrows)

2. The robot is knocked off of its pathing by debris

MOE FTC 365 Engineering Notebook — Rover Ruckus

E70

a. A new VuMark is seen and the robot stops its original pathing (blue

arrows) and relocalizes, figuring out its new (x, y) point

b. Pathfinding Algorithms calculate a path to the destination (#3)

c. Robot follows the pathing with encoder (purple arrows)

3. Destination is reached

MOE FTC 365 Engineering Notebook — Rover Ruckus

E71

Error Correction & Fallback Plan B Routines

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental

goal of autonomous is to have consistent, reproducible results, we try to better handle some

errors that may result in a deviation from any planned autonomous route.

• Turn Corrections

• Distance Sensor Fallback

Turn Corrections

Implementation: C58, C59

In many of the routines and paths taken during autonomous, due to the nature of our

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient,

results in a faulty autonomous. To cut back on this, we define a given angle error range for any

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts

what it is doing to turn back into proper position.

The diagram below shows the turn correction process.

Distance Sensor Fallback

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback

when they produce errors. When getting readings in the middle of autonomous, a distance

MOE FTC 365 Engineering Notebook — Rover Ruckus

E72

sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed

point to plug into the Pathfinding Algorithms rather than a more accurate point from the

distance sensors.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E73

Sampling Algorithm

Our team tried using a variety of sampling methods, including the official TensorFlow neural

network included in the SDK, creating our own neural network (see Additional Summary

Section), and OpenCV for color detection. However, one key flaw with all of these methods was

inconsistency. Even though the official TensorFlow network worked most of the time, we found

that when placed on a competition field with a yellow background (like a gym floor), gold

minerals were sometimes improperly recognized. This led to complications during

competitions. Due to the flaws with the official TensorFlow network, our robot very often

picked the wrong mineral to sample.

To solve this issue, we wrote our own custom algorithm for the sake of sampling.

Steps:

1. Take camera data from Webcam

Example of camera data.

2. To remove any small splotches of yellow in the background (or any other strange color),

reduce the resolution of the image.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E74

Reduced resolution of original image.

3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation,

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision

Algorithm in Additional Summary Section)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E75

MOE FTC 365 Engineering Notebook — Rover Ruckus

E76

Driver Controlled Enhancements

Adjustable Field-Centric Movement

Conceptualization and implementation: C130, C131, C141

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this,

we are able to use field-centric motion rather than robot-centric motion. For the ease of the

driver, we make all movements relative to the field rather than relative to the robot.

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y

This diagram represents the rotation of axes that underlies the principles in field centric

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a

custom 0° point for the robot.

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value

for FWD (forward), STR (strafe), or ROT (rotation).

MOE FTC 365 Engineering Notebook — Rover Ruckus

E77

The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so

that field-centric movement occurs.

Lander Based Movement

Conceptualization and implementation: C141

Our robot also has “lander specialized” movement that allows for fine turning before hanging

the robot. The D-pad allows for smaller adjustments in four-directional movement

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller

adjustments in turning to fix orientation before raising the lift to hang.

Controls

Gamepad 1

Left Joystick: Field-centric movement in all directions

Right Joystick: Rotational movement (turns)

A: Reset 0° point (forward heading) for field-centric movement

Left Bumper: Turn slowly left (see Lander Based Movement)

Right Bumper: Turn slowly right (see Lander Based Movement)

D-Pad: (see Lander Based Movement)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E78

UP → Move slowly forward

DOWN → Move slowly backward

LEFT → Strafe slowly left

RIGHT → Strafe slowly right

MOE FTC 365 Engineering Notebook — Rover Ruckus

E79

Autonomous Routines

Conceptualization and testing of routine: C76

Iterative improvements, testing, and debugging: C84, C85

Testing environment fabrication: C104

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122

Testing and evaluations: C140, C141, C145

MOE FTC 365 Engineering Notebook — Rover Ruckus

E80

The image above represents our autonomous routine for the depot starting points. For the

crater starting points, we only sample the gold mineral. We plan on executing the following

steps for the depot starting points (the crater starting points are only the first two steps):

1. Landing & Detecting gold mineral

2. Travelling to and knocking off gold mineral

3. Travelling to depot

4. Deposit the Team Marker and leave gold mineral

5. Travel to crater & extend arm into crater

Initialization

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map.

2. Initialize REV IMU sensor

3. Initialize Vuforia

4. Initialize TensorFlow

5. Reset Team Marker Servo to position 1

6. Reset Crater Extension Arm to position 1

1. Landing & Detecting gold mineral (30 pts.)

1. Use linear actuator to move lift up for given # of encoder tics

a. The robot touches the floor and the claw goes above the top of the handle on

the lander

2. Using multithreading, lower the lift back to its starting position

a. (see Multithreading in Key Algorithms)

b. The program continues on without waiting for the process to finish because of

the multithreading

3. Turn ~70° to see 2 minerals and decide which is gold

a. (see Sampling Algorithm in Key Algorithms)

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or

center

2. Landing & Detecting gold mineral (25 pts.)

1. Move forward appropriate # of inches to knock off gold mineral from its starting

position

2. Continue moving forward to safely clear other 2 silver minerals

3. Travelling to depot

1. Turn appropriate number of degrees to face the depot

2. Move forward appropriate # of inches to reach the depot

MOE FTC 365 Engineering Notebook — Rover Ruckus

E81

a. Note that the gold mineral is kept in control of the robot through the metal plate

on its front – similar to a bulldozer

4. Deposit the Team Marker and leave gold mineral (17 pts.)

1. Turn appropriate # of degrees for front of robot to face the front/back wall

2. Localize and figure out (x, y) posi8tion on the MOEPS global field grid by using distance

sensors

a. (See Distance Sensor Localization in Localization)

b. If the distance sensors have an error in measurement, fallback to Plan B

3. Turn appropriate number of degrees for left side of robot to face corner of field

4. Drop off Team Marker by setting Team Marker servo to position 0

5. Calculate path to crater using Pathfinding Algorithms

a. Plan A: Use (x, y) position from distance sensors

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A

c. (see A* Pathfinding Algorithm & Dijkstra’s Algorithm)

5. Travel to crater & extend arm into crater (10 pts.)

1. Turn ~90° right for the back to face the crater

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation

a. (see “Rotational Symmetry” in A* Pathfinding Algorithm & Dijkstra’s Algorithm)

3. Follow pathing to reach crater

4. Extend arm

5. Drive backwards to guarantee arm is in crater

MOE FTC 365 Engineering Notebook — Rover Ruckus

E82

Additional Summary Information

Creating An Artificial Neural Network (ANN)

Conceptualization and implementation: C110, C111, C112, C113, C114, C115

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network

with TensorFlow that could distinguish the left, center, or right position of the gold in the

sampling minerals.

Choosing the Correct Structure

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a

commonly used technique to train a neural network based around gradient descent.

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in

each hidden layer. The final output has 3 possibilities. This neural network requires less training

data because the problem at hand is fundamentally clear in terms of processing; there are no

MOE FTC 365 Engineering Notebook — Rover Ruckus

E83

complex edge detections required. All the neural network has to do is distinguish between

yellow and white and their locations in the images.

Acquiring Training Data & Preprocessing (Total of 48 Images)

Key ideas in images for the neural network:

• Changed background of images to show background does not matter

• Changed lighting of images to show lighting does not matter

• Changed tilt of images to show tilt does not matter

• Did not change order of minerals to show only ordering of minerals matter

NOTE: The preprocessing was automated using Python scripts to save time.

The reason the images’ resolutions were reduced was due to the fact that training the network

would require more time. Although training the network at full resolution would be fine, it

MOE FTC 365 Engineering Notebook — Rover Ruckus

E84

would possibly take a few minutes, and this can get cumbersome when refining and tweaking

the data. We felt predictions could be made just as well at reduced resolution.

The process of converting to a Base-10 representation of hex #RRGGBB values:

1. Take individual R, G, B (0 – 255) values of each pixel

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB)

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number

All the data was saved to a .txt file to be trained on later.

Training & Accuracy of Neural Network

Because we reduced the resolutions of the images in the preprocessing, training time for the 48

images was incredibly short: 5-15 seconds.

After training a successful model, here were our results.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E85

As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an

indication of over-fitting the training data, but the network was able to successfully predict our

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other

words, when we gave the network new data, it was able to successfully determine whether the

gold mineral was in the left, right, or center.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E86

Gold Mineral Decision Algorithm

See engineering notebook entries: C121, C122, C128, C129, C130

Since our robot was only able to see two minerals on the field, we had to write an algorithm to

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was

on the right of the 2 right minerals, it would be on the right.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E87

Vuforia Listener

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.)

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique

approach in capturing these events. In Vuforia, there is a class known as the

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark

when one knows exactly when they will see a VuMark. However, due to the variable nature of

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe

and efficient way.

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the

methods in the default listener, we realized that there was no convenient method to realize

when a new VuMark was found, so we modified one of the existing methods to let us know

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be

notified properly.

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program

would work consistently on multiple threads while being able to share information between the

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of

information between the threads. If we did not, there is the slight chance that when two

threads modify the same variable at the same time, there could be a loss of information. The

usage of Atomic variables notifies the robot in the middle of following the path found by the

Pathfinding Algorithms to stop what it is doing and realign against the VuMark.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E88

Text-To-Speech (TTS)

For additional fun and utility, we incorporated the Google Text-to-Speech technology that

allows text to be read aloud in a human-like fashion.

On the field, our robot likes to let us know how it is doing through a variety of phrases,

including when it is initialized. Certain phrases include:

• “Initialized Vuforia”

• “Initialization Complete”

• “Initialized Gyro”

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism

and loyalty to our team. Certain phrases it uses include:

• “Go MOE”

• “Whooo!”

• “Hi _____” (where _____ may be someone’s name)

o Note: this is pre-programmed, we have not yet integrated the facial recognition

technology for the robot to detect people on its own

Our robot also has a fondness for music, which it may play on or off the field. More than

anything else, our robot’s personality makes interacting with it more interesting and fun! :)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E89

MOE, Miracles of Engineering

FTC Team 365

2018-19 Control Award

Submission

MOE FTC 365 Engineering Notebook — Rover Ruckus

E90

Introduction

Throughout the design of our robot, we have kept one universal theme in mind.
User Friendliness: The measure of how robust, simple, easy to

maintain, and easy to use a robot is.

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have

tried to keep the number of important components on the robot (sensors,

motors, etc...) to a minimum while still vying to accomplishing our goals in mind.

The result has been a robot that places more importance on intricate algorithms

than sensors.

Our robot does utilize a good number of sensors, but wherever one can be

omitted (for example: a camera rather than a color sensor), we take that option.

This results in less environmental variables that can impact robot performance, as

the robot relies on its algorithms and math to do computation in the place of

sensors that could sometimes provide faulty data.

When driving the robot, we try to keep controls as simple as possible to allow the

driver to focus on making important decisions rather than be distracted or

bothered with the controlling of the robot.

Along with programming for the sake of the robot in competition, we have also

programmed for the sake of learning (such as creating our own Neural Network!)

to involve ourselves in other forms and kinds of programming. For an explanation

on our thought process & more experimental procedures, view the Additional

Summary Information. Also, below most titles will be a listing of notebook pages

grouped together by what stage in the development process they show.

The 6 main sections are as follows:

1. Autonomous Objectives

2. Sensors Used

3. Key Algorithms

4. Driver Controlled Enhancements

5. Autonomous Program Diagrams

6. Additional Summary Information

MOE FTC 365 Engineering Notebook — Rover Ruckus

E91

Table of Contents

1.0 Autonomous Objectives

 1.1 Autonomous Routine..

 1.2 Algorithmic & Programming Objectives..

 5

 5

2.0 Sensors Used

 2.1 Encoders..

 2.2 Inertial Measurement Unit..

 2.3 Logitech Webcam..

 2.4 REV 2m Distance Sensor..

 2.5 Touch Sensor...

 7

 7

 8

 8

 8

3.0 Key Algorithms & Constructs

 3.1 Field Grid & MOEPS...

 3.2 Localization..

 3.2.1 VuMark Localization...

 3.2.2 Distance Sensor Localization..

 3.3 Multithreading...

 3.4 Turning Methods...

 3.5 Jump Point Search / A* / Dijkstra’s Pathfinding Algorithm...................

 3.5.1 Introduction...

 3.5.2 Setup..

 3.5.3 Implementation...

 3.5.4 Pathfinding Algorithm Error Correction...

 9

 12

 12

 13

 15

 16

 17

 17

 18

 20

 23

MOE FTC 365 Engineering Notebook — Rover Ruckus

E92

 3.5.5 “Rotational Symmetry”..

 3.5.6 Realignment...

 3.6 Error Correction & Fallback Plan B Routines..

 3.6.1 Turn Corrections...

 3.6.2 Distance Sensor Fallback..

 3.7 Sampling Algorithm...

 24

 26

 28

28

 28

 30

4.0 Driver Controlled Enhancements

 4.1 Adjustable Field-Centric Movement..

 4.2 Lander Based Movement...

 4.3 Controls...

 33

 34

 34

5.0 Autonomous Routines

 5.1 Depot Autonomous...

 5.2 Crater Autonomous...

 36

 37

6.0 Additional Summary Information

 6.1 Creating An Artificial Neural Network...

 6.2 Gold Mineral Decision Algorithm...

 6.3 Vuforia Listener...

 6.4 Text-to-Speech...

 39

 43

 44

 45

MOE FTC 365 Engineering Notebook — Rover Ruckus

E93

Autonomous Objectives

The following objectives are what we planned for in our robot’s autonomous

modes.

• Autonomous Routine: (82 pts.)

o Landing – dropping off of the lander (30 pts.)

o Sampling – knocking off the gold mineral (25 pts.)

o Sampled gold mineral placed in depot (2 pts.)

o Claiming – dropping the Team Marker in the depot (15 pts.)

o Parking – ending autonomous in the crater (10 pts.)

• Algorithmic & Programming Objectives:

o Establishing Field Grid & MOEPS (MOE Positioning System)

o Localization

o Multithreading

o Accurate Turning Methods

o Accurate Pathfinding with Intelligent Algorithms

▪ Pathfinding Error Correction

▪ “Rotational Symmetry”

▪ Realignment

o Error Correction & Fallback Plan B Routines

Although not completely relevant in explaining the controls and actions of the

robot, we included additional algorithms and details in our programming process

that we felt to be of importance in the Additional Summary Information.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E94

Sensors Used

MOE FTC 365 Engineering Notebook — Rover Ruckus

E95

Encoders (3)

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the

front-left wheel, while the other is on the front-right wheel.

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for

precise, controlled motion of the lift motor.

1: Encoder placed on the motor controlling the linear slide of our harvester. The encoder is

used for making sure the slide does not swing out uncontrollably during autonomous.

1: Encoder placed on the motor controlling the bucket where minerals are deposited in the

lander. The encoder is used for precise, controlled motion of the motor.

Inertial Measurement Unit (IMU) (1)

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that

MOE FTC 365 Engineering Notebook — Rover Ruckus

E96

measures rotation parallel to the ground for accuracy in any turns or rotational movement of

the robot.

Logitech Webcam (1)

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera

allows for the phone to be safely protected within the robot, making sure that nothing goes

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks.

REV 2m Distance Sensor (2)

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction.

The sensor is primarily used for telling distance away from the walls of the field.

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The

sensor is primarily used for telling distance away from the walls of the field.

Color Sensor (2)

1: Color sensor placed on the front of the robot, facing the ground to align with lines during

autonomous.

1: Color sensor placed on the back of the robot, facing the ground to align with lines during

autonomous.

Touch Sensor (1)

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in

hanging. Since the lift has to have the same starting point across all robot autonomous modes,

a standard starting point is important.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E97

Key Algorithms & Constructs

Field Grid & MOEPS (MOE Positioning System)

Conceptualization and implementation: C7, C8, C13, C14

Due to the importance of the two positioning systems described below in our programming

structures, we have affectionately coined the term MOE Position System, or MOEPS, to

describe the systems.

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72).

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit

= 2 inches.

12 feet = 144 inches = 72 MOE units

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E98

To ease our programming, we made a Java class called PointMap to hold all important (x, y)

points on the field with English names. While programming, we were able to refer to these

names rather than the actual (x, y) coordinate. The following places were labelled as important:

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot

Along with a positional (x, y) global map, we wanted to create an orientational global map to

establish a consistent angle at any point on the map. The angle map was modeled off of the

Unit Circle, which was used as a standard for marking angles on the map.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E99

MOE FTC 365 Engineering Notebook — Rover Ruckus

E100

Localization

See engineering notebook entries: C42, C43, C146, C147, C148

In terms of our programming team, localization means to find out the robot’s exact global (x, y)

position on the field. In this case, the robot would have to find out its global (x, y) position on

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of

the Vuforia image recognition technology and the REV 2m Distance Sensor.

VuMark Localization

When the robot’s webcam sees a

VuMark, the following steps are

taken:

1. Extrapolate horizontal (x) and

vertical (y) distance from the

VuMark using Vuforia

2. Scale the x, y distance into our

2-inch units – this is done by

multiplying the values by the

scalar 1/50

3. Depending on the VuMark,

subtract the x, y values as

appropriate – each VuMark has a

distinct x, y position on the field,

so subtract the robot’s local x, y

position from the VuMark from

the VuMark’s global position

VuMark Localization on the

field

MOE FTC 365 Engineering Notebook — Rover Ruckus

E101

Distance Sensor Localization

Localization using the distance sensor is similar to the VuMark Localization method, but is less

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used

when no VuMarks are available and localization is necessary.

In this case, the following steps are taken: 1. Get vertical and

horizontal distance in inches from wall with distance sensors 2.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E102

Subtract inches from

wall (x, y) position

3. Resulting (x, y)

coordinate is the

robot’s global location

MOE FTC 365 Engineering Notebook — Rover Ruckus

E103

Multithreading

Implementation of lift mechanism: C140

Implementation of realignment: C58, C59

Multithreading is a technique by which a single set of code can be used by several processors at

different stages of execution. In other words, a program can have multiple sets of instructions

running at the same time. With multithreading, the robot is able to do more than one task at

any given time. Since our robot is trying to accomplish all standard autonomous points, time is

often cut close to 30 seconds.

Without the use of multithreading, the robot’s autonomous routine would have to speed up

its motors significantly to meet the allotted 30 seconds. This speeding up results in less

accuracy, resulting in an autonomous that is more prone to error.

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally

use our own threads or pull from other threads for the following purposes:

• Bringing down the lift mechanism used for dropping/hanging

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information

for more details)

We also used Atomic variables for thread-safe operation. When a global variable is dealt with

between 2 or more threads, there is always the danger of it leaking data when operations on it

are done at the same time. Since using a raw variable without synchronization or any other

standard is considered bad practice, we decided to use Atomic variables for thread-safe

operation. This way, when communicating between the Main Robot thread and the Vuforia

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of

data between the two threads.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E104

Turning Methods

Conceptualization and implementation: C31, C32

Turning in autonomous has to be precise to the degree for repeatable results, which is why

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we

are within the correct angle.

Field-Centric Turning & Robot-Centric Turning

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the

robot turns to a given global angle on the field.

In robot-centric turning the robot turns to a given angle relative to itself.

Robot-centric vs. Field-centric Turning:

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the

orientation, the robot will always turn to the same 90° mark in field-centric turning.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E105

Jump Point Search / A* / Dijkstra’s Pathfinding

Algorithm

Conceptualization and implementation of old linear pathfinding algorithm (not

used on robot): C42, C43

Conceptualization and implementation: C46, C47

Implementation and testing: C50, C51

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93

Radius and size reductions: C97, C98, C99

2nd Stage Debugging: C104, C105

8-Directional Movement: C128, C129

3rd Stage Testing: C146

“Rotational Symmetry”: C150, C151

Introduction

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its

destination. In many autonomous pathings, whenever there is a slight disturbance, the

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on

the field and calculates on its own how to reach the destination.

The A* (pronounced A Star) and Jump Point Search Algorithms are similar to the popular

Dijkstra’s Algorithm, which is used for finding the shortest paths between nodes in a graph. The

primary difference between Dijkstra’s and the other two is that the pair utilize a “heuristic

function”, or an approximation function, to approximate a faster solution to Dijkstra’s

algorithm. Dijkstra’s algorithm checks many more cases than the A* Algorithm, therefore taking

longer to arrive at a similar answer. Since the field we are using is 288x288 (82944) nodes, we

wanted to guarantee that processing speed would be fast. The algorithms commonly deal with

graphs shown like the one below, but had to be specially adapted in our case to work with a 2D

grid.

Visual representation of traditional graph in computer science:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E106

To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity

(when using lists) of O(N2) where N = number of nodes on the graph, while A* generally has a

time complexity of O(bd), where b = branching factor and d = depth of the solution on the

search tree. However, both of these algorithms have a very slow runtime in certain

circumstances, taking over 20 seconds to run. This is unacceptable when run in autonomous,

which only has a period of 30 seconds. The Jump Point Search algorithm is an optimized version

of the A* pathfinding algorithm that consistently brought our runtime below 2 seconds.

Note that the time complexity of A*/Jump Point Search is worse when using a very expensive

heuristic cost function, but we are using the simple Euclidean distance, or the distance formula:

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B.

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and

Northwest.

Setup

To utilize the pathfinding algorithms, we needed to first setup a graph. To accomplish this, we

took a 2D image of the field from Game Manual 2. After that, we wrote a Python script (utilizing

the PIL imaging library) to go through the image, converting it to points we deemed as barriers

(white) and points we deemed as free space the robot could travel on (black). This conversion

was done through a color-based threshold. In essence, the gray parts of the map were free

space while the other colors were barriers. The output was an image with the converted points

as well as a 288x288-dimensional array that we would be able to use as our graph for the

pathfinding algorithms. Also, the image was flipped because we wanted [0,0] of the 2D array to

be the corner of the red depot, and [287,287] of the 2D array to be the corner of the blue

depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E107

Mapped FTC Field (Visual Representation of Array)

 1 (or white) = point a robot cannot travel on

 0 (or black) = point a robot can travel on

MOE FTC 365 Engineering Notebook — Rover Ruckus

E108

The original conversion had some errors, because places (depot, lines near the lander, etc...) were

marked in white when they should have been open space. To fix this, we manually changed some values

in the array. Since most of the conversion work was done by the Python script, this only took a few

minutes.

The above image is what the output array looked like visually. The barriers shown in the image above

are represented by 1s, while the free space shown in the image above are represented by 0s.

Implementation

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a

simulation to show the pathfinding algorithm’s path from any Point A to Point B visually:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E109

Initial Simulation

As complications with the algorithm increased, there was a need for a better simulation that more

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the

the robot (the green square), step by step, moving through the field.

Screenshot of Final Simulation

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

MOE FTC 365 Engineering Notebook — Rover Ruckus

E110

https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

To now use the algorithm in practice, we had to convert the results into a usable format by writing an

algorithm to do so.

Path Conversion Algorithm

(Input) - Original Pathfinding Results:
A series of points describing each point to go
from point A to point B.

For example, getting from (0,0) to (5,5) could be:
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) -->
(5, 4) --> (5, 5)

(Output) - Usable Results:
The number of inches in each direction the robot
has to go, in order (each unit is 2 inches).

For example, getting from (0,0) to (5,5) could be:
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2
in.
--> FORWARD 8 in.

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated

into movements for the robot based on encoder ticks. The result of this extensive process is a robust

and repeatable movement system that allows the robot to figure out its own path when given two

points on the field. This simplifies the process of adjusting and programming autonomous, as well as

allowing for a more robust and dynamic movement system.

Pathfinding Algorithm Error Correction

MOE FTC 365 Engineering Notebook — Rover Ruckus

E111

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few

issues we had to fix in order of importance.

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while

the robot actually comprised at least a circle of many points with radius about 10 inches.

This led to the edges of the robot crashing into parts of the field (lander, crater,

sampling, etc...) while its center thought it was following the pathfinding algorithms as a

single small point.

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end

destination due to slight turning while making up, down, left, and right movements.

Error #1 – Size Corrections

Conceptualization and implementation: C55, C97

Second iteration: C98, C99

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the

robot as a single point, we treated it as a collection of multiple points – when put together,

these points would form the robot rather than one small point.

Error #2 – Turn Corrections

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A*

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A*

algorithm.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E112

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct

angle by again utilizing the gyro to turn back into position.

“Rotational Symmetry”

Conceptualization and Implementation: C150, C151

Another feature that we added to the pathfinding algorithm is the idea of “rotational

symmetry”. In other words, a given set of output instructions can be rotated by certain number

of degrees while still preserving the relative directions of each movement.

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of

robot movements. Since moving forwards and backwards is always faster than strafing,

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and

rotate the pathing instructions. The robot can then quickly turn and apply the rotated

instructions to allow for more forwards and backwards movements, resulting in a more

robust movement.

Examples of rotations done on set of output instructions:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E113

The algorithm is accomplished by setting a numerical value to each of the directions in

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This

simple numbering pattern makes rotation much simpler than writing each direction’s rotation

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes

2).

Visualization of Direction to Number mapping, along with degrees associated with rotations:

This system’s simplicity becomes apparent when put into practice. For example, if an

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value,

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90°

clockwise rotation from North.

Realignment

MOE FTC 365 Engineering Notebook — Rover Ruckus

E114

Conceptualization and Implementation: C58, C59

As there is always a chance for error, such as another robot or debris in the way of a robot, a

given robot might be knocked out of its planned path. This is another application for the

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that

it sees a new VuMark, the robot is able to get back on path.

The diagram below illustrates this process:

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point

a. Pathfinding Algorithms calculate a path to the destination (#3)

b. Robot follows the pathing with encoders (blue arrows)

2. The robot is knocked off of its pathing by debris

MOE FTC 365 Engineering Notebook — Rover Ruckus

E115

a. A new VuMark is seen and the robot stops its original pathing (blue

arrows) and relocalizes, figuring out its new (x, y) point

b. Pathfinding Algorithms calculate a path to the destination (#3)

c. Robot follows the pathing with encoder (purple arrows)

3. Destination is reached

MOE FTC 365 Engineering Notebook — Rover Ruckus

E116

Error Correction & Fallback Plan B Routines

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental

goal of autonomous is to have consistent, reproducible results, we try to better handle some

errors that may result in a deviation from any planned autonomous route.

• Turn Corrections

• Distance Sensor Fallback

Turn Corrections

Implementation: C58, C59

In many of the routines and paths taken during autonomous, due to the nature of our

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient,

results in a faulty autonomous. To cut back on this, we define a given angle error range for any

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts

what it is doing to turn back into proper position.

The diagram below shows the turn correction process.

Distance Sensor Fallback

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback

when they produce errors. When getting readings in the middle of autonomous, a distance

MOE FTC 365 Engineering Notebook — Rover Ruckus

E117

sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed

point to plug into the Pathfinding Algorithms rather than a more accurate point from the

distance sensors.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E118

Sampling Algorithm

Our team tried using a variety of sampling methods, including the official TensorFlow neural

network included in the SDK, creating our own neural network (see Additional Summary

Section), and OpenCV for color detection. However, one key flaw with all of these methods was

inconsistency. Even though the official TensorFlow network worked most of the time, we found

that when placed on a competition field with a yellow background (like a gym floor), gold

minerals were sometimes improperly recognized. This led to complications during

competitions. Due to the flaws with the official TensorFlow network, our robot often picked the

wrong mineral to sample.

To solve this issue, we wrote our own custom algorithm for the sake of sampling.

Steps:

1. Take camera data from Webcam

Example of camera data

2. To remove any small splotches of yellow in the background (or any other strange color),

reduce the resolution of the image.

Reduced resolution of original image

MOE FTC 365 Engineering Notebook — Rover Ruckus

E119

3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation,

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).

Visualization of image after pixels below HSV threshold are removed.

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision

Algorithm in Additional Summary Section)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E120

MOE FTC 365 Engineering Notebook — Rover Ruckus

E121

Driver Controlled Enhancements

Adjustable Field-Centric Movement

Conceptualization and implementation: C130, C131, C141

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this,

we are able to use field-centric motion rather than robot-centric motion. For the ease of the

driver, we make all movements relative to the field rather than relative to the robot.

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y

This diagram represents the rotation of axes that underlies the principles in field centric

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a

custom 0° point for the robot.

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value

for FWD (forward), STR (strafe), or ROT (rotation).

MOE FTC 365 Engineering Notebook — Rover Ruckus

E122

The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so

that field-centric movement occurs.

Lander Based Movement

Conceptualization and implementation: C141

Our robot also has “lander specialized” movement that allows for fine turning before hanging

the robot. The D-pad allows for smaller adjustments in four-directional movement

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller

adjustments in turning to fix orientation before raising the lift to hang.

Controls

Gamepad 1

Left Joystick: Field-centric movement in all directions

Right Joystick: Rotational movement (turns)

A: Reset 0° point (forward heading) for field-centric movement

X: Open Bucket Halfway

B: Open Bucket Full

Y: Toggles Tele-Op and End Game Mode

MOE FTC 365 Engineering Notebook — Rover Ruckus

E123

Left & Right Triggers: Moves Rotating Arm Up and Down in Tele-Op Mode and

Latching Lift in End-Game Mode

Left & Right Bumpers: Fine turning (see Lander Based Movement)

D-Pad: (see Lander Based Movement)

UP → Move slowly forward

DOWN → Move slowly backward

LEFT → Strafe slowly left

RIGHT → Strafe slowly right

Gamepad 2

Left Joystick: Rotates Transition arm (wrist) up and down

Right Joystick: Moves Linear slide in an out

Left & Right Triggers: Intakes using harvester (independently-run with respective

controls)

Left & Right Bumpers: Dispenses using harvester (independently-run with

respective controls)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E124

Autonomous Routines

Conceptualization and testing of routine: C76

Iterative improvements, testing, and debugging: C84, C85

Testing environment fabrication: C104

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122

Testing and evaluations: C140, C141, C145

MOE FTC 365 Engineering Notebook — Rover Ruckus

E125

The image above represents our autonomous routine for all possible starting points. Regardless

of starting point, our autonomous strives to accomplish delatching, sampling, depositing team

marker, and parking.. We plan on executing the following steps for each autonomous:

1. Landing & Detecting gold mineral

2. Travelling to and knocking off gold mineral

3. Travelling to depot

4. Deposit the Team Marker and leave gold mineral

5. Travel to crater & extend arm into crater

Initialization

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map.

2. Initialize REV IMU sensor

3. Initialize Vuforia

4. Reset Crater Extension Arm to position 1

5. Have robot say “Finished initialization” through speakers to doubly confirm initialization

1. Landing & Detecting gold mineral (30 pts.)

1. Use linear actuator to move lift up for given # of encoder tics

a. The robot touches the floor and the claw goes above the top of the handle on

the lander

2. Using multithreading, lower the lift back to its starting position

a. (see Multithreading in Key Algorithms)

b. The program continues on without waiting for the process to finish because of

the multithreading

3. Turn ~70° to see 2 minerals and decide which is gold

a. (see Sampling Algorithm in Key Algorithms)

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or

center

2. Landing & Detecting gold mineral (25 pts.)

1. Move forward appropriate # of inches to knock off gold mineral from its starting

position

2. Continue moving forward to safely clear other 2 silver minerals

3a. Travelling to depot (Depot Start Point)

1. Turn appropriate number of degrees to face VuMark (Rover/Moon)

2. Move forward appropriate # of inches to read data from the VuMark (distance, angle,

etc...)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E126

3b. Travelling to depot (Crater Start Point)

1. Turn appropriate number of degrees to face the depot

2. Move forward appropriate # of inches to reach the depot

3. Localize and figure out (x, y) position on the MOEPS global field grid by using Vuforia

4. Calculate and follow path to depot using Pathfinding Algorithms

4. Deposit the Team Marker (15 pts.) – If Depot Start Point, deposit

gold mineral in depot (+2 pts.)

1. Turn appropriate # of degrees for front of robot to face the front/back wall

2. Localize and figure out (x, y) position on the MOEPS global field grid by using distance

sensors

a. (See Distance Sensor Localization in Localization)

b. If the distance sensors have an error in measurement, fallback to Plan B

3. Turn appropriate number of degrees for left side of robot to face corner of field

4. Drop off Team Marker

5. Calculate path to crater using Pathfinding Algorithms

a. Plan A: Use (x, y) position from distance sensors

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A

c. (see Jump Point Search/A*/Dijkstra’s Pathfinding Algorithms)

5a. Travel to crater & extend arm into crater (10 pts. – Depot Start

Point)

1. Turn ~90° right for the back to face the crater

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation

a. (see “Rotational Symmetry” in Jump Point Search/A*/Dijkstra’s Pathfinding

Algorithms)

3. Follow pathing to reach crater on other alliance’s side

4. Extend arm

5. Drive backwards to guarantee arm is in crater

5b. Travel to crater & extend arm into crater (10 pts. – Crater Start

Point)

6. Follow pathing to reach crater

7. Extend arm

8. Drive backwards to guarantee arm is in crater

MOE FTC 365 Engineering Notebook — Rover Ruckus

E127

MOE FTC 365 Engineering Notebook — Rover Ruckus

E128

Additional Summary Information

Creating An Artificial Neural Network (ANN)

Conceptualization and implementation: C110, C111, C112, C113, C114, C115

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network

with TensorFlow that could distinguish the left, center, or right position of the gold in the

sampling minerals.

Choosing the Correct Structure

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a

commonly used technique to train a neural network based around gradient descent.

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in

each hidden layer. The final output has 3 possibilities. This neural network requires less training

data because the problem at hand is fundamentally clear in terms of processing; there are no

MOE FTC 365 Engineering Notebook — Rover Ruckus

E129

complex edge detections required. All the neural network has to do is distinguish between

yellow and white and their locations in the images.

Acquiring Training Data & Preprocessing (Total of 48 Images)

Key ideas in images for the neural network:

• Changed background of images to show background does not matter

• Changed lighting of images to show lighting does not matter

• Changed tilt of images to show tilt does not matter

• Did not change order of minerals to show only ordering of minerals matter

NOTE: The preprocessing was automated using Python scripts to save time.

The reason the images’ resolutions were reduced was due to the fact that training the network

would require more time. Although training the network at full resolution would be fine, it

MOE FTC 365 Engineering Notebook — Rover Ruckus

E130

would possibly take a few minutes, and this can get cumbersome when refining and tweaking

the data. We felt predictions could be made just as well at reduced resolution.

The process of converting to a Base-10 representation of hex #RRGGBB values:

1. Take individual R, G, B (0 – 255) values of each pixel

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB)

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number

All the data was saved to a .txt file to be trained on later.

Training & Accuracy of Neural Network

Because we reduced the resolutions of the images in the preprocessing, training time for the 48

images was incredibly short: 5-15 seconds.

After training a successful model, here were our results.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E131

As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an

indication of over-fitting the training data, but the network was able to successfully predict our

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other

words, when we gave the network new data, it was able to successfully determine whether the

gold mineral was in the left, right, or center.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E132

Gold Mineral Decision Algorithm

See engineering notebook entries: C121, C122, C128, C129, C130

Since our robot was only able to see two minerals on the field, we had to write an algorithm to

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was

on the right of the 2 right minerals, it would be on the right.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E133

Vuforia Listener

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.)

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique

approach in capturing these events. In Vuforia, there is a class known as the

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark

when one knows exactly when they will see a VuMark. However, due to the variable nature of

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe

and efficient way.

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the

methods in the default listener, we realized that there was no convenient method to realize

when a new VuMark was found, so we modified one of the existing methods to let us know

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be

notified properly.

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program

would work consistently on multiple threads while being able to share information between the

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of

information between the threads. If we did not, there is the slight chance that when two

threads modify the same variable at the same time, there could be a loss of information. The

usage of Atomic variables notifies the robot in the middle of following the path found by the

Pathfinding Algorithms to stop what it is doing and realign against the VuMark.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E134

Text-To-Speech (TTS)

For additional fun and utility, we incorporated the Google Text-to-Speech technology that

allows text to be read aloud in a human-like fashion.

On the field, our robot likes to let us know how it is doing through a variety of phrases,

including when it is initialized. Certain phrases include:

• “Initialized Vuforia”

• “Initialization Complete”

• “Initialized Gyro”

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism

and loyalty to our team. Certain phrases it uses include:

• “Go MOE”

• “Whooo!”

• “Hi _____” (where _____ may be someone’s name)

o Note: this is pre-programmed, we have not yet integrated the facial recognition

technology for the robot to detect people on its own

Our robot also has a fondness for music, which it may play on or off the field. More than

anything else, our robot’s personality makes interacting with it more interesting and fun! :)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E135

 1

MOE, Miracles of Engineering

FTC Team 365

2018-19 Control Award

Submission

MOE FTC 365 Engineering Notebook — Rover Ruckus

E136

 2

Introduction

Throughout the design of our robot, we have kept one universal theme in mind.
User Friendliness: The measure of how robust, simple, easy to

maintain, and easy to use a robot is.

To accomplish this goal of user friendliness in Autonomous and TeleOp, we tried

to keep the number of important components on the robot (sensors, motors,

etc...) to a minimum while still vying to accomplishing our goals in mind. The

result has been a robot that places a greater priority on intricate algorithms than

sensors.

Our robot utilizes a good number of sensors, but wherever one can be omitted

(for example: a camera rather than multiple color sensors), we take that option.

This results in less environmental variables that can impact robot performance, as

the robot relies on its algorithms and math to do computation in the place of

sensors that could sometimes provide faulty data.

When driving the robot, we try to keep controls as simple as possible in order to

allow the driver to focus on making important decisions rather than be distracted

or bothered with controlling the robot.

Along with programming for the sake of the robot in competition, we have also

programmed for the sake of learning (such as creating our own Neural Network!)

to involve ourselves in other forms and kinds of programming. For an explanation

on our thought process & more experimental procedures, view the Additional

Summary Information. Also, below most titles will be a listing of notebook pages

grouped together by what stage in the development process they show.

The 6 main sections are as follows:

1. Autonomous Objectives

2. Sensors Used

3. Key Algorithms

4. Driver Controlled Enhancements

5. Autonomous Program Diagrams

6. Additional Summary Information

MOE FTC 365 Engineering Notebook — Rover Ruckus

E137

 3

Table of Contents
Introduction ___ 2

Autonomous Objectives __ 5

Autonomous Routine __ 5

Algorithmic & Programming Objectives ___ 5

Sensors Used ___ 6
Encoders ___ 6
Inertial Measurement Unit (IMU) __ 6
Logitech Webcam __ 6
REV 2m Distance Sensor ___ 7
Color Sensor __ 7
Touch Sensor __ 7
Odometry Wheels __ 7

Key Algorithms & Constructs __ 8

Field Grid & MOEPS (MOE Positioning System) ___ 8

Localization ___ 11
VuMark Localization ___ 11
Distance Sensor Localization ___ 12

Multithreading __ 17

Turning Methods __ 18

Jump Point Search / A* / Dijkstra’s Pathfinding Algorithm _________________________________ 19
Introduction __ 19
Setup ___ 20
Implementation ___ 22
Pathfinding Algorithm Error Correction __ 24
“Rotational Symmetry” ___ 25
Realignment ___ 27

Error Correction & Fallback Plan B Routines ___ 30
Turn Corrections __ 30
Distance Sensor Fallback __ 30

Pure Pursuit Controller ___ 32
Path Following __ 33
Constants __ 35

Sampling Algorithm __ 37

Driver Controlled Enhancements __ 40

Adjustable Field-Centric Movement ___ 40

Lander Based Movement __ 42

MOE FTC 365 Engineering Notebook — Rover Ruckus

E138

 4

Controls ___ 43

Autonomous Routines __ 44

Initialization __ 45
Steps ___ 45

Additional Summary Information ___ 47

Creating An Artificial Neural Network (ANN) __ 47
Choosing the Correct Structure ___ 47
Acquiring Training Data & Preprocessing (Total of 48 Images) ____________________________________ 48
Training & Accuracy of Neural Network __ 49

Gold Mineral Decision Algorithm ___ 51

Vuforia Listener ___ 52

Simulations ___ 53

Text-To-Speech (TTS) ___ 55

MOE FTC 365 Engineering Notebook — Rover Ruckus

E139

 5

Autonomous Objectives
The following objectives are what we planned for in our robot’s autonomous

modes.

Autonomous Routine
• Landing – dropping off of the lander (30 pts.)

• Sampling – knocking off the gold mineral (25 pts.)

• Sampled gold mineral placed in depot (2 pts.)

• Claiming – dropping the Team Marker in the depot (15 pts.)

• Parking – ending autonomous in the crater (10 pts.)

Algorithmic & Programming Objectives
• Establishing Field Grid & MOEPS (MOE Positioning System)

• Localization

• Multithreading

• Accurate Turning Methods

• Accurate Pathfinding with Intelligent Algorithms

o Pathfinding Error Correction

o “Rotational Symmetry”

o Realignment

• Error Correction & Fallback Plan B Routines

Although not completely relevant in explaining the controls and actions of the

robot, we included additional algorithms and details in our programming process

that we felt to be of importance in the Additional Summary Information.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E140

 6

Sensors Used

Encoders

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the

front-left wheel, while the other is on the front-right wheel.

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for

precise, controlled motion of the lift motor.

1: Encoder placed on the motor controlling the linear slide of our harvester. The encoder is

used for making sure the slide does not swing out uncontrollably during autonomous, and

allows for controlled motion during TeleOp.

Inertial Measurement Unit (IMU)

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that

measures rotation parallel to the ground for accuracy in any turns or rotational movement of

the robot.

Logitech Webcam

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera

allows for the phone to be safely protected within the robot, making sure that nothing goes

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E141

 7

REV 2m Distance Sensor

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction.

The sensor is primarily used for telling distance away from the walls of the field.

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The

sensor is primarily used for telling distance away from the walls of the field.

Color Sensor

1: Color sensor placed on the front of the robot, facing the ground to align with lines during

autonomous.

Touch Sensor

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in

hanging. Since the lift has to have the same starting point across all robot autonomous modes,

a standard starting point is important.

Odometry Wheels

1: Vertical odometry wheel placed on the side of the robot to allow the robot to continually

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization)

1: Horizontal odometry wheel placed on the side of the robot to allow the robot to continually

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization)

.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E142

 8

Key Algorithms & Constructs

Field Grid & MOEPS (MOE Positioning System)
Conceptualization and implementation: C7, C8, C13, C14

Due to the importance of the two positioning systems described below in our programming

structures, we have affectionately coined the term MOE Position System, or MOEPS, to

describe the systems.

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72).

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit

= 2 inches.

12 feet = 144 inches = 72 MOE units

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E143

 9

To ease our programming, we made a Java class called PointMap to hold all important (x, y)

points on the field with English names. While programming, we were able to refer to these

names rather than the actual (x, y) coordinates. The following places were labelled as

important:

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot

Along with a positional (x, y) global map, we wanted to create an orientational global map to

establish a consistent angle at any point on the map. The angle map was modeled off of the

Unit Circle, which was used as a standard for marking angles on the map.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E144

 10

MOE FTC 365 Engineering Notebook — Rover Ruckus

E145

 11

Localization
See engineering notebook entries: C42, C43, C146, C147, C148

In terms of our programming team, localization means finding out the robot’s exact global (x, y)

position on the field. In this case, the robot would have to find out its global (x, y) position on

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of

the Vuforia image recognition technology and the REV 2m Distance Sensor.

VuMark Localization

When the robot’s webcam

sees a VuMark, the following

steps are taken:

1. Extrapolate horizontal (x)

and vertical (y) distance from

the VuMark using Vuforia

2. Scale the x, y distance into

our 2-inch units – this is done

by multiplying the values by

the scalar 1/50

3. Depending on the VuMark,

subtract the x, y values as

appropriate – each VuMark

has a distinct x, y position on

the field, so subtract the

robot’s local x, y position from

the VuMark from the VuMark’s

global position

VuMark Localization on

the field

MOE FTC 365 Engineering Notebook — Rover Ruckus

E146

 12

Distance Sensor Localization

Localization using the distance sensor is similar to the VuMark Localization method, but is less

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used

when no VuMarks are available and localization is necessary.

In this case, the following steps are taken: 1. Get vertical and

horizontal distance in inches from wall with distance sensors 2.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E147

 13

Subtract inches from

wall (x, y) position

3. Resulting (x, y)

coordinate is the

robot’s global location

Odometry +

Gyro

Localization

Although the above

options for

localization (Vuforia,

Distance Sensor) are

robust, they both

contain one fatal

flaw: they are not

universally accessible. To use the above options, the robot either has to be close to a VuMark or

has to be close to a corner on the field while also being in the correct orientation.

Then came about the idea of using Odometry Wheels, which allow for continual localization at

any point on the field.

Odometry wheels are non-powered wheels bound to an encoder that allow for accurate

measurement of robot’s absolute movement. Since these wheels are not part of the drive

train, when the robot drives forward into a wall, for example, the drive train motors would

register a change in encoder tics while the odometry wheels would remain consistent since

they only move with the robot. In our robot, we use 2 MA3 encoders and 2 omni wheels for a

total of 2 odometry wheels.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E148

 14

The two odometry wheels on our robot allow for accurate measurement of positional

movement. Through the usage of the gyro sensor, we are able to do rotational math to figure

out the robot’s position at all times.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E149

 15

To use the odometry wheels reliably, we have to be able to distinguish between rotational

movement and translational movement. The typical way to solve this issue is through a

mechanical paradigm, which involves the use of additional odometry wheels opposite to each

on of importance. By averaging the values of both wheels (positive & negative changes would

cancel out), one could get an accurate measurement of only translational movement. Applying

this methodology to our robot, we would have 4 odometry wheels on the robot. Due to the fact

that we did not have space for 4 odometry wheels, our team has to resort to other options to

discount rotational movement.

This has been done through the gyro and a measure we created known as “rotational offset”.

This “rotational offset” would be used as a subtractor to discount any non-important odometry

values. By dividing the angle difference (found between each refresh of the odometry wheels’

position) over 360, and multiplying by the “rotational offset”, an appropriate offset measure

can be found for each wheel.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E150

 16

 By calibrating & turning a “rotational offset” for each of the two odometry wheels, we can

accurately discount any rotational motion, allowing only translational movement to be used in

the calculation of the robot’s position.

The above graphs show the number of volts that the MA3 encoders showed for a rotation of

the robot. By using the equations above to estimate the rotational offset for each of the

wheels, we can effectively & accurately cancel out rotational motion.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E151

 17

Multithreading
Implementation of lift mechanism: C140

Implementation of realignment: C58, C59

Multithreading is a technique by which a single set of code can be used by several processors at

different stages of execution. In other words, a program can have multiple sets of instructions

running at the same time. With multithreading, the robot is able to do more than one task at

any given time. Since our robot is trying to accomplish all standard autonomous points, time is

often cut close to 30 seconds.

Without the use of multithreading, the robot’s autonomous routine would have to speed up

its motors significantly to meet the allotted 30 seconds. This speeding up results in less

accuracy, resulting in an autonomous that is more prone to error.

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally

use our own threads or pull from other threads for the following purposes:

• Bringing down the lift mechanism used for dropping/hanging

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information

for more details)

We also used Atomic variables for thread-safe operation. When a global variable is dealt with

between 2 or more threads, there is always the danger of it leaking data when operations on it

are done at the same time. Since using a raw variable without synchronization or any other

standard is considered bad practice, we decided to use Atomic variables for thread-safe

operation. This way, when communicating between the Main Robot thread and the Vuforia

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of

data between the two threads.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E152

 18

Turning Methods
Conceptualization and implementation: C31, C32

Turning in autonomous must be precise to the degree for repeatable results, which is why

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by

time, we turn by setting the powers the motors, and simply wait for the IMU to indicate that

we are within the correct angle.

Field-Centric Turning & Robot-Centric Turning

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the

robot turns to a given global angle on the field.

In robot-centric turning the robot turns to a given angle relative to itself.

Robot-centric vs. Field-centric Turning:

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the

orientation, the robot will always turn to the same 90° mark in field-centric turning.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E153

 19

Jump Point Search / A* / Dijkstra’s Pathfinding

Algorithm
Conceptualization and implementation of old linear pathfinding algorithm (not

used on robot): C42, C43

Conceptualization and implementation: C46, C47

Implementation and testing: C50, C51

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93

Radius and size reductions: C97, C98, C99

2nd Stage Debugging: C104, C105

8-Directional Movement: C128, C129

3rd Stage Testing: C146

“Rotational Symmetry”: C150, C151

Introduction

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its

destination. In many autonomous pathings, whenever there is a slight disturbance, the

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on

the field and calculates on its own how to reach the destination.

The A* (pronounced A Star) and Jump Point Search Algorithms are similar to the popular

Dijkstra’s Algorithm, which is used for finding the shortest paths between nodes in a graph. The

primary difference between Dijkstra’s and the other two is that the pair utilize a “heuristic

function”, or an approximation function, to approximate a faster solution to Dijkstra’s

algorithm. Dijkstra’s algorithm checks many more cases than the A* Algorithm, therefore taking

longer to arrive at a similar answer. Since the field we are using is 288x288 (82944) nodes, we

wanted to guarantee that processing speed would be fast. The algorithms commonly deal with

graphs shown like the one below, but had to be specially adapted in our case to work with a 2D

grid.

Visual representation of traditional graph in computer science:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E154

 20

To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity

(when using lists) of O(N2) where N = number of nodes on the graph, while A* generally has a

time complexity of O(bd), where b = branching factor and d = depth of the solution on the

search tree. However, both of these algorithms have a very slow runtime in certain

circumstances, taking over 20 seconds to run. This is unacceptable when run in autonomous,

which only has a period of 30 seconds. The Jump Point Search algorithm is an optimized version

of the A* pathfinding algorithm that consistently brought our runtime below 2 seconds.

Note that the time complexity of A*/Jump Point Search is worse when using a very expensive

heuristic cost function, but we are using the simple Euclidean distance, or the distance formula:

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B.

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and

Northwest.

Setup

To utilize the pathfinding algorithms, we needed to first setup a graph. To accomplish this, we

took a 2D image of the field from Game Manual 2. After that, we wrote a Python script (utilizing

the PIL imaging library) to go through the image, converting it to points we deemed as barriers

(white) and points we deemed as free space the robot could travel on (black). This conversion

was done through a color-based threshold. In essence, the gray parts of the map were free

space while the other colors were barriers. The output was an image with the converted points

as well as a 288x288-dimensional array that we would be able to use as our graph for the

pathfinding algorithms. Also, the image was flipped because we wanted [0,0] of the 2D array to

be the corner of the red depot, and [287,287] of the 2D array to be the corner of the blue

depot.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E155

 21

Mapped FTC Field (Visual Representation of Array)

 1 (or white) = point a robot cannot travel on

 0 (or black) = point a robot can travel on

MOE FTC 365 Engineering Notebook — Rover Ruckus

E156

 22

The original conversion had some errors, because places (depot, lines near the lander, etc...) were

marked in white when they should have been open space. To fix this, we manually changed some values

in the array. Since most of the conversion work was done by the Python script, this only took a few

minutes.

The above image is what the output array looked like visually. The barriers shown in the image above

are represented by 1s, while the free space shown in the image above are represented by 0s.

Implementation

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a

simulation to show the pathfinding algorithm’s path from any Point A to Point B visually:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E157

 23

Initial Simulation

As complications with the algorithm increased, there was a need for a better simulation that more

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the

the robot (the green square), step by step, moving through the field.

Screenshot of Final Simulation

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

MOE FTC 365 Engineering Notebook — Rover Ruckus

E158

https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2

 24

To now use the algorithm in practice, we had to convert the results into a usable format by writing an

algorithm to do so.

Path Conversion Algorithm

(Input) - Original Pathfinding Results:
A series of points describing each point to go
from point A to point B.

For example, getting from (0,0) to (5,5) could be:
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) -->
(5, 4) --> (5, 5)

(Output) - Usable Results:
The number of inches in each direction the robot
has to go, in order (each unit is 2 inches).

For example, getting from (0,0) to (5,5) could be:
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2
in.
--> FORWARD 8 in.

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated

into movements for the robot based on encoder ticks. The result of this extensive process is a robust

and repeatable movement system that allows the robot to figure out its own path when given two

points on the field. This simplifies the process of adjusting and programming autonomous, as well as

allowing for a more robust and dynamic movement system.

Pathfinding Algorithm Error Correction

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few

issues we had to fix in order of importance.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E159

 25

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while

the robot actually comprised at least a circle of many points with radius about 10 inches.

This led to the edges of the robot crashing into parts of the field (lander, crater,

sampling, etc...) while its center thought it was following the pathfinding algorithms as a

single small point.

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end

destination due to slight turning while making up, down, left, and right movements.

Error #1 – Size Corrections

Conceptualization and implementation: C55, C97

Second iteration: C98, C99

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the

robot as a single point, we treated it as a collection of multiple points – when put together,

these points would form the robot rather than one small point.

Error #2 – Turn Corrections

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A*

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A*

algorithm.

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct

angle by again utilizing the gyro to turn back into position.

“Rotational Symmetry”

MOE FTC 365 Engineering Notebook — Rover Ruckus

E160

 26

Conceptualization and Implementation: C150, C151

Another feature that we added to the pathfinding algorithm is the idea of “rotational

symmetry”. In other words, a given set of output instructions can be rotated by certain number

of degrees while still preserving the relative directions of each movement.

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of

robot movements. Since moving forwards and backwards is always faster than strafing,

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and

rotate the pathing instructions. The robot can then quickly turn and apply the rotated

instructions to allow for more forwards and backwards movements, resulting in a more

robust movement.

Examples of rotations done on set of output instructions:

The algorithm is accomplished by setting a numerical value to each of the directions in

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This

simple numbering pattern makes rotation much simpler than writing each direction’s rotation

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes

2).

MOE FTC 365 Engineering Notebook — Rover Ruckus

E161

 27

Visualization of Direction to Number mapping, along with degrees associated with rotations:

This system’s simplicity becomes apparent when put into practice. For example, if an

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value,

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90°

clockwise rotation from North.

Realignment

Conceptualization and Implementation: C58, C59

As there is always a chance for error, such as another robot or debris in the way of a robot, a

given robot might be knocked out of its planned path. This is another application for the

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at

MOE FTC 365 Engineering Notebook — Rover Ruckus

E162

 28

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that

it sees a new VuMark, the robot is able to get back on path.

The diagram below illustrates this process:

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point

a. Pathfinding Algorithms calculate a path to the destination (#3)

b. Robot follows the pathing with encoders (blue arrows)

2. The robot is knocked off of its pathing by debris

a. A new VuMark is seen and the robot stops its original pathing (blue

arrows) and relocalizes, figuring out its new (x, y) point

b. Pathfinding Algorithms calculate a path to the destination (#3)

c. Robot follows the pathing with encoder (purple arrows)

3. Destination is reached

MOE FTC 365 Engineering Notebook — Rover Ruckus

E163

 29

MOE FTC 365 Engineering Notebook — Rover Ruckus

E164

 30

Error Correction & Fallback Plan B Routines
Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental

goal of autonomous is to have consistent, reproducible results, we try to better handle some

errors that may result in a deviation from any planned autonomous route.

• Turn Corrections

• Distance Sensor Fallback

Turn Corrections

Implementation: C58, C59

In many of the routines and paths taken during autonomous, due to the nature of our

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient,

results in a faulty autonomous. To cut back on this, we define a given angle error range for any

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts

what it is doing to turn back into proper position.

The diagram below shows the turn correction process.

Distance Sensor Fallback

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback

when they produce errors. When getting readings in the middle of autonomous, a distance

sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If

MOE FTC 365 Engineering Notebook — Rover Ruckus

E165

 31

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed

point to plug into the Pathfinding Algorithms rather than a more accurate point from the

distance sensors.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E166

 32

Pure Pursuit Controller
With the creation of our pathfinding algorithms (see sections above), we were running into

issues on how to properly follow the points the pathfinding suggested. Our original approach

was to follow the points directly, meaning that the robot would directly travel one of eight

directions. (North, East, Southeast, etc...).

Instead, through the use of the Pure Pursuit Controller, we can smoothly follow points with a

Tank Drive chassis. Although we have a Mecanum chassis, it can be adapted into a Tank Drive

chassis when ignoring its strafing capabilities. Additionally, disregarding the use of strafing will

allow the robot’s movements to be more consistent, as strafing has more variable motion.

To be able to use the Pure Pursuit Controller, the following prerequisites must be met:

• Continual localization (or knowing exact x,y location on the field at any moment)

o We accomplished this through odometry wheels

• Ability to accurately set velocities of wheels

o We accomplished this through having encoders on all 4 drive wheels & using

velocity PIDs for each one

• Path to follow

o We accomplished this through two ways:

o 1. Predefined route

o 2. Jump Point Search pathfinding algorithm for dynamic pathing

Through these prerequisites, Pure Pursuit is able to accurately correct itself whenever the robot

deviates from the given path while still following the given path accurately.

Before doing Pure Pursuit in TeleOp, we also ran simulations to make sure that it worked. A

picture of the simulation is seen below:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E167

 33

Path Following

The initial steps Pure Pursuit takes are as follows:

1. Take in a set of points – this is known as the pathing (blue line)

2. Inject in additional points between the given points (blue line)

3. Smooth all the points (red line)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E168

 34

Pathfinder – Development of Automated Guided Vehicle for Hospital Logistics - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Illustration-of-Pure-Pursuit-algorithm-principle-Knowing-the-current-robot-location-

and_fig6_319714221 [accessed 20 Apr, 2019]

After establishing a smoothed path to follow, the next general steps are:

1. Find the closest point on the pathing to the robot’s current position

2. Use the next point on the pathing to establish a line with the closest point

3. Using the robot’s current position and a lookahead distance, draw a circle around the robot and

find its intersection with the line in #2 – this intersection will be known as the lookahead point

4. Using the lookahead point, calculate the robot’s signed (+/-) curvature

a. This signed curvature value lets the robot know how much to turn by

5. Using the curvature, calculate the velocity for the left side & right side of the robot

6. Apply the velocity to the wheels

7. REPEAT STEPS 1-6 until the robot reaches the final destination

When calculating the velocity to apply to the wheels, Pure Pursuit needs to know the robot’s maximum

velocity. We measured this in ticks/time, which we then converted into our own custom units that we

used for Pure Pursuit.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E169

 35

The orange line above shows the max velocity of the robot.

Constants

For Pure Pursuit to work properly, the following constants have to be tuned accordingly:

Lookahead Distance: How far the robot looks ahead from its current position for a point to follow. (and

calculate curvature from)

As seen above, a small lookahead distance (small purple circle) results in short, choppy movements of

the robot when following a path, while a large lookahead distance (larger purple circle) results in

MOE FTC 365 Engineering Notebook — Rover Ruckus

E170

 36

overgeneralized movements of the robot when following a path. A large lookahead distance might be

dangerous in that it may hit a mineral since it cuts corners on turns too heavily. A proper lookahead

distance will find a balance that allows the robot to accurately follow a path.

Max Velocity: The maximum velocity the robot can move at.

Turning Constant: How sharply the robot should turn

Smoothing A / Smoothing B / Smoothing Tolerance: These all control how closely the smoothing should

follow the given path. In other words, whether the curves should closely fit the turns or generalize and

approximate the turns instead.

Track Width: The horizontal width of the robot, that helps in the calculation of turns for the robot.

Needs to be calibrated slightly higher than the actual width because turns are important for the Rover

Ruckus game.

Overall, the Pure Pursuit Controller allows for fast, precise, and accurate autonomous path following.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E171

 37

Sampling Algorithm
Our team tried using a variety of sampling methods, including the official TensorFlow neural

network included in the SDK, creating our own neural network (see Additional Summary

Section), and OpenCV for color detection. However, one key flaw with all of these methods was

inconsistency. Even though the official TensorFlow network worked most of the time, we found

that when placed on a competition field with a yellow background (like a gym floor), gold

minerals were sometimes improperly recognized. This led to complications during

competitions. Due to the flaws with the official TensorFlow network, our robot often picked the

wrong mineral to sample.

To solve this issue, we wrote our own custom algorithm for the sake of sampling.

Steps:

1. Take camera data from Webcam

Example of camera data

2. To remove any small splotches of yellow in the background (or any other strange color),

reduce the resolution of the image.

Reduced resolution of original image

MOE FTC 365 Engineering Notebook — Rover Ruckus

E172

 38

3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation,

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).

Visualization of image after pixels below HSV threshold are removed.

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision

Algorithm in Additional Summary Section)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E173

 39

MOE FTC 365 Engineering Notebook — Rover Ruckus

E174

 40

Driver Controlled Enhancements

Adjustable Field-Centric Movement
Conceptualization and implementation: C130, C131, C141

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this,

we are able to use field-centric motion rather than robot-centric motion. For the ease of the

driver, we make all movements relative to the field rather than relative to the robot.

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y

This diagram represents the rotation of axes that underlies the principles in field centric

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a

custom 0° point for the robot.

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value

for FWD (forward), STR (strafe), or ROT (rotation).

MOE FTC 365 Engineering Notebook — Rover Ruckus

E175

 41

The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so

that field-centric movement occurs.

Assisted TeleOp

Our robot uses “Assisted TeleOp,” in which the robot performs a series of actions in one press

of a button.

To make our Assisted TeleOp functions adaptable, we created an AssistedTeleOpManager class

that takes in an AssistedConfig. This allows us to simply write a configuration for an automated

task, immediately and quickly integrating it into our code.

Each of our Assisted TeleOp configs uses a progress variable that can be increased or decreased

to control which stage of action it belongs to. This brings flexibility into the AssistedTeleOp,

since the progress variable could be automatically increased or be controlled by a single

joystick. This heavily simplifies complex motions that would otherwise require many controller

inputs.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E176

 42

Looking at the diagram above, the manager abstracts much of the logic of progressing through

an Assisted TeleOp routine. By using the manager, moving forwards and backwards with an

assisted routine becomes very simplified. All the programmer that uses the manager has to do

is set the progress variable that controls the motion of the robot.

This infrastructure also rapidly speeds up development of Assisted TeleOp routines, since the

programmer only has to focus on the logic of the Assisted TeleOp, not the mundane transitions

between stages of Assisted TeleOp.

For example, our transfer mechanism, which sends the minerals from the harvester to the

dispenser (and involves complex movements), can use this infrastructure to manage progress

through stages.

Lander Based Movement
Conceptualization and implementation: C141

Our robot also has “lander specialized” movement that allows for fine turning before hanging

the robot. The D-pad allows for smaller adjustments in four-directional movement

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller

adjustments in turning to fix orientation before raising the lift to hang.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E177

 43

Controls
Gamepad 1

Left Joystick:

Left Joystick Down: Toggle between field-centric and robot-centric movement

Right Joystick Left, Right: Turn robot

A: Toggle dispenser orientation towards crater or within robot

X: Toggle dispenser orientation up or down

B: Toggle end game mode

Y: Reset 0° point (forward heading) for field-centric movement

Left & Right Triggers: Raise and lower hanging lift

Left & Right Bumpers: Fine turning (see Lander Based Movement)

D-Pad: (see Lander Based Movement)

UP → Move slowly forward

DOWN → Move slowly backward

LEFT → Strafe slowly left

RIGHT → Strafe slowly right

Gamepad 2

Left Joystick Click: Open and close intake gate & lower harvester servo

Left Joystick: Extend and retract harvester linear slide

Left & Right Triggers: Controls green intake wheel that brings in minerals

D-Pad: (see Lander Based Movement)

UP → Move slowly forward

RIGHT → Strafe slowly right

MOE FTC 365 Engineering Notebook — Rover Ruckus

E178

 44

Autonomous Routines
Conceptualization and testing of routine: C76

Iterative improvements, testing, and debugging: C84, C85

Testing environment fabrication: C104

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122

Testing and evaluations: C140, C141, C145

The image above represents our autonomous routine for all possible starting points. Regardless

of starting point, our autonomous strives to accomplish delatching, sampling, depositing team

marker, and parking. We plan on executing the following steps for each autonomous:

MOE FTC 365 Engineering Notebook — Rover Ruckus

E179

 45

1. Landing & Detecting gold mineral

2. Travelling to and knocking off gold mineral

3. Travelling to depot

4. Deposit the Team Marker and leave gold mineral

5. Travel to crater & extend arm into crater

Initialization

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map.

2. Initialize REV IMU sensor

3. Initialize Vuforia

4. Reset Crater Extension Arm to position 1

5. Have robot say “Finished initialization” through speakers to doubly confirm initialization

Steps

1. Landing & Detecting gold mineral (30 pts.)

1. Use linear actuator to move lift up for given # of encoder tics

a. The robot touches the floor and the claw goes above the top of the handle on

the lander

2. Using multithreading, lower the lift back to its starting position

a. (see Multithreading in Key Algorithms)

b. The program continues on without waiting for the process to finish because of

the multithreading

3. Turn ~70° to see 2 minerals and decide which is gold

a. (see Sampling Algorithm in Key Algorithms)

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or

center

2. Landing & Detecting gold mineral (25 pts.)

1. Move forward appropriate # of inches to knock off gold mineral from its starting

position

2. Continue moving forward to safely clear other 2 silver minerals

3a. Travelling to depot (Depot Start Point)

1. Turn appropriate number of degrees to face VuMark (Rover/Moon)

2. Move forward appropriate # of inches to read data from the VuMark (distance, angle,

etc...)

3b. Travelling to depot (Crater Start Point)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E180

 46

1. Turn appropriate number of degrees to face the depot

2. Move forward appropriate # of inches to reach the depot

3. Localize and figure out (x, y) position on the MOEPS global field grid by using Vuforia

4. Calculate and follow path to depot using Pathfinding Algorithms

4. Deposit the Team Marker (15 pts.) – If Depot Start Point, deposit

gold mineral in depot (+2 pts.)

1. Turn appropriate # of degrees for front of robot to face the front/back wall

2. Localize and figure out (x, y) position on the MOEPS global field grid by using distance

sensors

a. (See Distance Sensor Localization in Localization)

b. If the distance sensors have an error in measurement, fallback to Plan B

3. Turn appropriate number of degrees for left side of robot to face corner of field

4. Drop off Team Marker

5. Calculate path to crater using Pathfinding Algorithms

a. Plan A: Use (x, y) position from distance sensors

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A

c. (see Jump Point Search/A*/Dijkstra’s Pathfinding Algorithms)

5a. Travel to crater & extend arm into crater (10 pts. – Depot Start

Point)

1. Turn ~90° right for the back to face the crater

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation

a. (see “Rotational Symmetry” in Jump Point Search/A*/Dijkstra’s Pathfinding

Algorithms)

3. Follow pathing to reach crater on other alliance’s side

4. Extend arm

5. Drive backwards to guarantee arm is in crater

5b. Travel to crater & extend arm into crater (10 pts. – Crater Start

Point)

6. Follow pathing to reach crater

7. Extend arm

8. Drive backwards to guarantee arm is in crater

MOE FTC 365 Engineering Notebook — Rover Ruckus

E181

 47

Additional Summary Information

Creating An Artificial Neural Network (ANN)
Conceptualization and implementation: C110, C111, C112, C113, C114, C115

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network

with TensorFlow that could distinguish the left, center, or right position of the gold in the

sampling minerals.

Choosing the Correct Structure

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a

commonly used technique to train a neural network based around gradient descent.

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in

each hidden layer. The final output has 3 possibilities. This neural network requires less training

data because the problem at hand is fundamentally clear in terms of processing; there are no

MOE FTC 365 Engineering Notebook — Rover Ruckus

E182

 48

complex edge detections required. All the neural network has to do is distinguish between

yellow and white and their locations in the images.

Acquiring Training Data & Preprocessing (Total of 48 Images)

Key ideas in images for the neural network:

• Changed background of images to show background does not matter

• Changed lighting of images to show lighting does not matter

• Changed tilt of images to show tilt does not matter

• Did not change order of minerals to show only ordering of minerals matter

NOTE: The preprocessing was automated using Python scripts to save time.

The reason the images’ resolutions were reduced was due to the fact that training the network

would require more time. Although training the network at full resolution would be fine, it

MOE FTC 365 Engineering Notebook — Rover Ruckus

E183

 49

would possibly take a few minutes, and this can get cumbersome when refining and tweaking

the data. We felt predictions could be made just as well at reduced resolution.

The process of converting to a Base-10 representation of hex #RRGGBB values:

1. Take individual R, G, B (0 – 255) values of each pixel

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB)

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number

All the data was saved to a .txt file to be trained on later.

Training & Accuracy of Neural Network

Because we reduced the resolutions of the images in the preprocessing, training time for the 48

images was incredibly short: 5-15 seconds.

After training a successful model, here were our results.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E184

 50

As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an

indication of over-fitting the training data, but the network was able to successfully predict our

test data, so the network indicates it has not overfitted to the point of inaccuracy.

However, when put into practice, this neural network had decent accuracy (~60%), but

definitely not do the point needed for reliability in autonomous..

MOE FTC 365 Engineering Notebook — Rover Ruckus

E185

 51

Gold Mineral Decision Algorithm

See engineering notebook entries: C121, C122, C128, C129, C130

Since our robot was only able to see two minerals on the field, we had to write an algorithm to

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was

on the right of the 2 right minerals, it would be on the right.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E186

 52

Vuforia Listener
(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.)

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique

approach in capturing these events. In Vuforia, there is a class known as the

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark

when one knows exactly when they will see a VuMark. However, due to the variable nature of

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe

and efficient way.

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the

methods in the default listener, we realized that there was no convenient method to realize

when a new VuMark was found, so we modified one of the existing methods to let us know

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be

notified properly.

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program

would work consistently on multiple threads while being able to share information between the

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of

information between the threads. If we did not, there is the slight chance that when two

threads modify the same variable at the same time, there could be a loss of information. The

usage of Atomic variables notifies the robot in the middle of following the path found by the

Pathfinding Algorithms to stop what it is doing and realign against the VuMark.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E187

 53

Simulations

Throughout the creation and testing of our code, we have used simulations to quickly and test the

efficacy of our algorithms before putting them on the actual robot.

We have run simulations in a 3D environment with the Unity engine.

Additionally, we have run simulations for the testing of our Pure Pursuit Controller and Pathfinding

Algorithms.

MOE FTC 365 Engineering Notebook — Rover Ruckus

E188

 54

MOE FTC 365 Engineering Notebook — Rover Ruckus

E189

 55

Text-To-Speech (TTS)
For additional fun and utility, we incorporated the Google Text-to-Speech technology that

allows text to be read aloud in a human-like fashion.

On the field, our robot likes to let us know how it is doing through a variety of phrases,

including when it is initialized. Certain phrases include:

• “Initialized Vuforia”

• “Initialization Complete”

• “Initialized Gyro”

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism

and loyalty to our team. Certain phrases it uses include:

• “Go MOE”

• “Whooo!”

• “Hi _____” (where _____ may be someone’s name)

o Note: this is pre-programmed, we have not yet integrated the facial recognition

technology for the robot to detect people on its own

Our robot also has a fondness for music, which it may play on or off the field. More than

anything else, our robot’s personality makes interacting with it more interesting and fun! :)

MOE FTC 365 Engineering Notebook — Rover Ruckus

E190

	Control Document v4 (4-14-19) (1).pdf
	Autonomous Objectives
	Autonomous Routine
	Algorithmic & Programming Objectives

	Sensors Used
	Encoders
	Inertial Measurement Unit (IMU)
	Logitech Webcam
	REV 2m Distance Sensor
	Color Sensor
	Touch Sensor
	Odometry Wheels

	Key Algorithms & Constructs
	Field Grid & MOEPS (MOE Positioning System)
	Localization
	VuMark Localization
	Distance Sensor Localization

	Multithreading
	Turning Methods
	Jump Point Search / A* / Dijkstra’s Pathfinding Algorithm
	Introduction
	Setup
	Implementation
	Pathfinding Algorithm Error Correction
	Error #1 – Size Corrections
	Error #2 – Turn Corrections

	“Rotational Symmetry”
	Realignment

	Error Correction & Fallback Plan B Routines
	Turn Corrections
	Distance Sensor Fallback

	Pure Pursuit Controller
	Path Following
	Constants

	Sampling Algorithm

	Driver Controlled Enhancements
	Adjustable Field-Centric Movement
	Lander Based Movement
	Controls
	Gamepad 1
	Gamepad 2

	Autonomous Routines
	Initialization
	Steps
	1. Landing & Detecting gold mineral (30 pts.)
	2. Landing & Detecting gold mineral (25 pts.)
	3a. Travelling to depot (Depot Start Point)
	3b. Travelling to depot (Crater Start Point)
	4. Deposit the Team Marker (15 pts.) – If Depot Start Point, deposit gold mineral in depot (+2 pts.)
	5a. Travel to crater & extend arm into crater (10 pts. – Depot Start Point)
	5b. Travel to crater & extend arm into crater (10 pts. – Crater Start Point)

	Additional Summary Information
	Creating An Artificial Neural Network (ANN)
	Choosing the Correct Structure
	Acquiring Training Data & Preprocessing (Total of 48 Images)
	Training & Accuracy of Neural Network

	Gold Mineral Decision Algorithm
	Vuforia Listener
	Simulations
	Text-To-Speech (TTS)

