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Introduction 

Throughout the design of our robot, we have kept one universal theme in mind. 
User Friendliness: The measure of how robust, simple, easy to 

maintain, and easy to use a robot is. 

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have 

tried to keep the number of important components on the robot (sensors, 

motors, etc...) to a minimum while still vying to accomplishing our goals in mind. 

The result has been a robot that places more importance on intricate algorithms 

than sensors.  

Our robot does utilize a good number of sensors, but wherever one can be 

omitted (for example: a camera rather than a color sensor), we take that option. 

This results in less environmental variables that can impact robot performance, as 

the robot relies on its algorithms and math to do computation in the place of 

sensors that could sometimes provide faulty data. 

When driving the robot, we try to keep controls as simple as possible to allow the 

driver to focus on making important decisions rather than be distracted or 

bothered with the controlling of the robot. 

Along with programming for the sake of the robot in competition, we have also 

programmed for the sake of learning (such as creating our own Neural Network!) 

to involve ourselves in other forms and kinds of programming. For an explanation 

on our thought process & more experimental procedures, view the Additional 

Summary Information. Also, below most titles will be a listing of notebook pages 

grouped together by what stage in the development process they show. 

The 6 main sections are as follows: 

1. Autonomous Objectives 

2. Sensors Used 

3. Key Algorithms 

4. Driver Controlled Enhancements 

5. Autonomous Program Diagrams 

6. Additional Summary Information 
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Autonomous Objectives 

The following objectives are what we planned for in our robot’s autonomous 

modes. 

• Autonomous Routine: (82 pts.) 

o Landing – dropping off of the lander (30 pts.) 

o Sampling – knocking off the gold mineral (25 pts.) 

o Sampled gold mineral placed in depot (2 pts.) 

o Claiming – dropping the Team Marker in the depot (15 pts.) 

o Parking – ending autonomous in the crater (10 pts.) 

• Algorithmic & Programming Objectives: 

o Establishing Field Grid & MOEPS (MOE Positioning System) 

o Localization 

o Multithreading 

o Accurate Turning Methods 

o Accurate Pathfinding with A* and Dijkstra’s Algorithms 

▪ Pathfinding Error Correction 

▪ “Rotational Symmetry” 

▪ Realignment 

o Error Correction & Fallback Plan B Routines 

Although not completely relevant in explaining the controls and actions of the 

robot, we included additional algorithms and details in our programming process 

that we felt to be of importance in the Additional Summary Information. 
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Sensors Used 

 

Encoders (3) 

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the 

front-left wheel, while the other is on the front-right wheel. 

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for 

precise, controlled motion of the lift motor. 

Inertial Measurement Unit (IMU) (1) 

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the 

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that 
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measures rotation parallel to the ground for accuracy in any turns or rotational movement of 

the robot. 

Logitech Webcam (1) 

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera 

allows for the phone to be safely protected within the robot, making sure that nothing goes 

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks. 

REV 2m Distance Sensor (2) 

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction. 

The sensor is primarily used for telling distance away from the walls of the field. 

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The 

sensor is primarily used for telling distance away from the walls of the field. 

Touch Sensor (1) 

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator 

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in 

hanging. Since the lift has to have the same starting point across all robot autonomous modes, 

a standard starting point is important.   
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Key Algorithms & Constructs 

Field Grid & MOEPS (MOE Positioning System) 

Conceptualization and implementation: C7, C8, C13, C14 

Due to the importance of the two positioning systems described below in our programming 

structures, we have affectionately coined the term MOE Position System, or MOEPS, to 

describe the systems. 

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To 

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72). 

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit 

= 2 inches. 

12 feet = 144 inches = 72 MOE units 

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners 

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot. 
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To ease our programming, we made a Java class called PointMap to hold all important (x, y) 

points on the field with English names. While programming, we were able to refer to these 

names rather than the actual (x, y) coordinate. The following places were labelled as important: 

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At 

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot 

Along with a positional (x, y) global map, we wanted to create an orientational global map to 

establish a consistent angle at any point on the map. The angle map was modeled off of the 

Unit Circle, which was used as a standard for marking angles on the map. 
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Localization 

See engineering notebook entries: C42, C43, C146, C147, C148 

In terms of our programming team, localization means to find out the robot’s exact global (x, y) 

position on the field. In this case, the robot would have to find out its global (x, y) position on 

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of 

the Vuforia image recognition technology and the REV 2m Distance Sensor. 

VuMark Localization 

When the robot’s webcam sees a 

VuMark, the following steps are 

taken:                                                                                                                  

1. Extrapolate horizontal (x) and 

vertical (y) distance from the 

VuMark using Vuforia                                                                                                              

2. Scale the x, y distance into our 

2-inch units – this is done by 

multiplying the values by the 

scalar 1/50                                                                                                                      

3. Depending on the VuMark, 

subtract the x, y values as 

appropriate – each VuMark has a 

distinct x, y position on the field, 

so subtract the robot’s local x, y 

position from the VuMark from 

the VuMark’s global position 

VuMark Localization on the 

field 
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Distance Sensor Localization 

Localization using the distance sensor is similar to the VuMark Localization method, but is less 

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used 

when no VuMarks are available and localization is necessary.  

In this case, the following steps are taken:                                                                         1. Get vertical and 

horizontal distance in inches from wall with distance sensors                                                                         2. 
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Subtract inches from 

wall (x, y) position                                                        

3. Resulting (x, y) 

coordinate is the 

robot’s global location 
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Multithreading 

Implementation of lift mechanism: C140 

Implementation of realignment: C58, C59 

Multithreading is a technique by which a single set of code can be used by several processors at 

different stages of execution. In other words, a program can have multiple sets of instructions 

running at the same time. With multithreading, the robot is able to do more than one task at 

any given time. Since our robot is trying to accomplish all standard autonomous points, time is 

often cut close to 30 seconds.  

Without the use of multithreading, the robot’s autonomous routine would have to speed up 

its motors significantly to meet the allotted 30 seconds. This speeding up results in less 

accuracy, resulting in an autonomous that is more prone to error.  

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally 

use our own threads or pull from other threads for the following purposes: 

• Bringing down the lift mechanism used for dropping/hanging 

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information 

for more details) 

We also used Atomic variables for thread-safe operation. When a global variable is dealt with 

between 2 or more threads, there is always the danger of it leaking data when operations on it 

are done at the same time. Since using a raw variable without synchronization or any other 

standard is considered bad practice, we decided to use Atomic variables for thread-safe 

operation. This way, when communicating between the Main Robot thread and the Vuforia 

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of 

data between the two threads.   
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Turning Methods 

Conceptualization and implementation: C31, C32 

Turning in autonomous has to be precise to the degree for repeatable results, which is why 

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by 

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we 

are within the correct angle.  

Field-Centric Turning & Robot-Centric Turning 

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the 

robot turns to a given global angle on the field. 

In robot-centric turning the robot turns to a given angle relative to itself.  

Robot-centric vs. Field-centric Turning: 

 

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric 

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the 

orientation, the robot will always turn to the same 90° mark in field-centric turning. 
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A* Pathfinding Algorithm & Dijkstra’s Algorithm 

Conceptualization and implementation of old linear pathfinding algorithm (not 

used on robot): C42, C43 

Conceptualization and implementation: C46, C47 

Implementation and testing: C50, C51 

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93 

Radius and size reductions: C97, C98, C99 

2nd Stage Debugging: C104, C105 

8-Directional Movement: C128, C129 

3rd Stage Testing: C146 

“Rotational Symmetry”: C150, C151 

Introduction 

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its 

destination. In many autonomous pathings, whenever there is a slight disturbance, the 

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot 

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on 

the field and calculates on its own how to reach the destination. 

The A* Pathfinding Algorithm (pronounced A Star) is similar to the popular Dijkstra’s Algorithm, 

which is used for finding the shortest paths between nodes in a graph. The only difference 

between the two is that the A* Algorithm utilizes a “heuristic function”, or an approximation 

function, to approximate a faster solution to Dijkstra’s algorithm. Dijkstra’s algorithm checks 

many more cases than the A* Algorithm, therefore taking longer to arrive at a similar answer. 

Since the field we are using is 72x72 (5184) nodes, we wanted to guarantee that processing 

speed would be optimal in all situations and have two approaches available to use. The 

algorithms commonly deal with graphs shown like the one below, but had to be specially 

adapted in our case to work with a 2D grid. 

Visual representation of traditional graph in computer science: 
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To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity 

(when using lists) of O(N2) where N = number of nodes on the graph, while A* has a time 

complexity of O(bd), where b = branching factor and d = depth of the solution on the search 

tree. Note that the time complexity of A* is worse when using a very expensive heuristic cost 

function, but we are using the simple Euclidean distance, or the distance formula:  

 

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B. 

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and 

Northwest. 

Setup 

To utilize the A* and Dijkstra algorithms, we needed to first setup a graph. To accomplish this, 

we took a 2D image of the field from Game Manual 2. After that, we wrote a Python script 

(utilizing the PIL imaging library) to go through the image, converting it to points we deemed as 

barriers (white) and points we deemed as free space the robot could travel on (black). This 

conversion was done through a color-based threshold. In essence, the gray parts of the map 

were free space while the other colors were barriers. The output was an image with the 

converted points as well as a 72x72 2-dimensional array that we would be able to use as our 

graph for the A* algorithm. Also, the image was flipped because we wanted [0,0] of the 2D 

array to be the corner of the red depot, and [71,71] of the 2D array to be the corner of the blue 

depot. 
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Mapped FTC Field (Visual Representation of Array) 

 1 (or white) = point a robot cannot travel on 

 0 (or black) = point a robot can travel on 
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The original conversion had some errors, because places (depot, lines near the lander, etc...) were 

marked in white when they should have been open space. To fix this, we manually changed some values 

in the array. Since most of the conversion work was done by the Python script, this only took a few 

minutes. 

The above image is what the output array looked like visually. The barriers shown in the image above 

are represented by 1s, while the free space shown in the image above are represented by 0s.  

Implementation 

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that 

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a 

simulation to show the A* Algorithm’s path from any Point A to Point B visually: 
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Initial Simulation

 

As complications with the algorithm increased, there was a need for a better simulation that more 

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the 

the robot (the green square), step by step, moving through the field. 

Screenshot of Final Simulation 

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2 
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To now use the algorithm in practice, we had to convert the results into a usable format by writing an 

algorithm to do so. 

Path Conversion Algorithm 

(Input) - Original Pathfinding Results: 
A series of points describing each point to go 
from point A to point B. 
 
For example, getting from (0,0) to (5,5) could be: 
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)  
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) --> 
(5, 4) --> (5, 5) 
 

(Output) - Usable Results: 
The number of inches in each direction the robot 
has to go, in order (each unit is 2 inches). 
 
For example, getting from (0,0) to (5,5) could be: 
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2 
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2 
in.  
--> FORWARD 8 in. 

 

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction 

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated 

into movements for the robot based on encoder ticks. The result of this extensive process is a robust 

and repeatable movement system that allows the robot to figure out its own path when given two 

points on the field. This simplifies the process of adjusting and programming autonomous, as well as 

allowing for a more robust and dynamic movement system.  

Pathfinding Algorithm Error Correction 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E23



The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few 

issues we had to fix in order of importance. 

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while 

the robot actually comprised at least a circle of many points with radius about 10 inches. 

This led to the edges of the robot crashing into parts of the field (lander, crater, 

sampling, etc...) while its center thought it was following the pathfinding algorithms as a 

single small point.  

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end 

destination due to slight turning while making up, down, left, and right movements. 

Error #1 – Size Corrections 

Conceptualization and implementation: C55, C97 

Second iteration: C98, C99 

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the 

robot as a single point, we treated it as a collection of multiple points – when put together, 

these points would form the robot rather than one small point. 

 

Error #2 – Turn Corrections 

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A* 

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A* 

algorithm.  
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If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct 

angle by again utilizing the gyro to turn back into position.  

“Rotational Symmetry” 

Conceptualization and Implementation: C150, C151 

Another feature that we added to the pathfinding algorithm is the idea of “rotational 

symmetry”. In other words, a given set of output instructions can be rotated by certain number 

of degrees while still preserving the relative directions of each movement. 

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of 

robot movements. Since moving forwards and backwards is always faster than strafing, 

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and 

rotate the pathing instructions. The robot can then quickly turn and apply the rotated 

instructions to allow for more forwards and backwards movements, resulting in a more 

robust movement. 

Examples of rotations done on set of output instructions: 
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The algorithm is accomplished by setting a numerical value to each of the directions in 

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This 

simple numbering pattern makes rotation much simpler than writing each direction’s rotation 

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the 

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes 

2). 

Visualization of Direction to Number mapping, along with degrees associated with rotations: 

 

This system’s simplicity becomes apparent when put into practice. For example, if an 

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it 

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value, 

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90° 

clockwise rotation from North. 

Realignment 
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Conceptualization and Implementation: C58, C59 

As there is always a chance for error, such as another robot or debris in the way of a robot, a 

given robot might be knocked out of its planned path. This is another application for the 

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is 

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary 

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at 

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that 

it sees a new VuMark, the robot is able to get back on path. 

The diagram below illustrates this process: 

  

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point 

a. Pathfinding Algorithms calculate a path to the destination (#3) 

b. Robot follows the pathing with encoders (blue arrows) 

2. The robot is knocked off of its pathing by debris 
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a. A new VuMark is seen and the robot stops its original pathing (blue 

arrows) and relocalizes, figuring out its new (x, y) point 

b. Pathfinding Algorithms calculate a path to the destination (#3) 

c. Robot follows the pathing with encoder (purple arrows) 

3. Destination is reached 
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Error Correction & Fallback Plan B Routines 

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental 

goal of autonomous is to have consistent, reproducible results, we try to better handle some 

errors that may result in a deviation from any planned autonomous route. 

• Turn Corrections 

• Distance Sensor Fallback 

Turn Corrections 

Implementation: C58, C59 

In many of the routines and paths taken during autonomous, due to the nature of our 

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of 

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly 

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient, 

results in a faulty autonomous. To cut back on this, we define a given angle error range for any 

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts 

what it is doing to turn back into proper position. 

The diagram below shows the turn correction process. 

 

Distance Sensor Fallback 

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback 

when they produce errors. When getting readings in the middle of autonomous, a distance 
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sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If 

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed 

point to plug into the Pathfinding Algorithms rather than a more accurate point from the 

distance sensors. 
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Driver Controlled Enhancements 

Adjustable Field-Centric Movement 

Conceptualization and implementation: C130, C131, C141 

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this, 

we are able to use field-centric motion rather than robot-centric motion. For the ease of the 

driver, we make all movements relative to the field rather than relative to the robot.  

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y 

 

This diagram represents the rotation of axes that underlies the principles in field centric 

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x 

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a 

custom 0° point for the robot. 

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value 

for FWD (forward), STR (strafe), or ROT (rotation). 
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The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so 

that field-centric movement occurs. 

Lander Based Movement 

Conceptualization and implementation: C141 

Our robot also has “lander specialized” movement that allows for fine turning before hanging 

the robot. The D-pad allows for smaller adjustments in four-directional movement 

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller 

adjustments in turning to fix orientation before raising the lift to hang. 

Controls 

Gamepad 1 

Left Joystick: Field-centric movement in all directions 

Right Joystick: Rotational movement (turns) 

A: Reset 0° point (forward heading) for field-centric movement 

Left Bumper: Turn slowly left (see Lander Based Movement) 

Right Bumper: Turn slowly right  (see Lander Based Movement) 

D-Pad: (see Lander Based Movement) 
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UP → Move slowly forward 

DOWN → Move slowly backward 

LEFT → Strafe slowly left 

RIGHT → Strafe slowly right 
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Autonomous Routines 

Conceptualization and testing of routine: C76 

Iterative improvements, testing, and debugging: C84, C85 

Testing environment fabrication: C104 

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122 

Testing and evaluations: C140, C141, C145 
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The image above represents our autonomous routine for the depot starting points. For the 

crater starting points, we only sample the gold mineral. We plan on executing the following 

steps for the depot starting points (the crater starting points are only the first two steps): 

1. Landing & Detecting gold mineral 

2. Travelling to and knocking off gold mineral 

3. Travelling to depot 

4. Deposit the Team Marker and leave gold mineral 

5. Travel to crater & extend arm into crater 

Initialization 

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map. 

2. Initialize REV IMU sensor  

3. Initialize Vuforia 

4. Initialize TensorFlow 

5. Reset Team Marker Servo to position 1 

6. Reset Crater Extension Arm to position 1 

1. Landing & Detecting gold mineral (30 pts.) 

1. Use linear actuator to move lift up for given # of encoder tics 

a. The robot touches the floor and the claw goes above the top of the handle on 

the lander 

2. Using multithreading, lower the lift back to its starting position 

a. (see Multithreading in Key Algorithms) 

b. The program continues on without waiting for the process to finish because of 

the multithreading 

3. Turn ~70° to see 2 minerals and decide which is gold 

a.  (see Gold Mineral Detection Method in Additional Summary Information) 

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or 

center 

2. Landing & Detecting gold mineral (25 pts.) 

1. Move forward appropriate # of inches to knock off gold mineral from its starting 

position 

2. Continue moving forward to safely clear other 2 silver minerals 

3. Travelling to depot 

1. Turn appropriate number of degrees to face the depot 

2. Move forward appropriate # of inches to reach the depot 
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a. Note that the gold mineral is kept in control of the robot through the metal plate 

on its front – similar to a bulldozer 

4. Deposit the Team Marker and leave gold mineral (17 pts.) 

1. Turn appropriate # of degrees for front of robot to face the front/back wall 

2. Localize and figure out (x, y) posi8tion on the MOEPS global field grid by using distance 

sensors 

a. (See Distance Sensor Localization in Localization) 

b. If the distance sensors have an error in measurement, fallback to Plan B 

3. Turn appropriate number of degrees for left side of robot to face corner of field 

4. Drop off Team Marker by setting Team Marker servo to position 0 

5. Calculate path to crater using Pathfinding Algorithms 

a. Plan A: Use (x, y) position from distance sensors 

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A 

c. (see A* Pathfinding Algorithm & Dijkstra’s Algorithm) 

5. Travel to crater & extend arm into crater (10 pts.) 

1. Turn ~90° right for the back to face the crater 

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation 

a. (see “Rotational Symmetry” in A* Pathfinding Algorithm & Dijkstra’s Algorithm) 

3. Follow pathing to reach crater 

4. Extend arm 

5. Drive backwards to guarantee arm is in crater 
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Additional Summary Information 

Creating An Artificial Neural Network (ANN) 

Conceptualization and implementation: C110, C111, C112, C113, C114, C115 

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network 

with TensorFlow that could distinguish the left, center, or right position of the gold in the 

sampling minerals.  

Choosing the Correct Structure 

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a 

commonly used technique to train a neural network based around gradient descent.  

 

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in 

each hidden layer. The final output has 3 possibilities. This neural network requires less training 

data because the problem at hand is fundamentally clear in terms of processing; there are no 
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complex edge detections required. All the neural network has to do is distinguish between 

yellow and white and their locations in the images.  

Acquiring Training Data & Preprocessing (Total of 48 Images) 

 

Key ideas in images for the neural network: 

• Changed background of images to show background does not matter 

• Changed lighting of images to show lighting does not matter 

• Changed tilt of images to show tilt does not matter 

• Did not change order of minerals to show only ordering of minerals matter 

NOTE: The preprocessing was automated using Python scripts to save time. 

The reason the images’ resolutions were reduced was due to the fact that training the network 

would require more time. Although training the network at full resolution would be fine, it 
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would possibly take a few minutes, and this can get cumbersome when refining and tweaking 

the data. We felt predictions could be made just as well at reduced resolution. 

The process of converting to a Base-10 representation of hex #RRGGBB values: 

1. Take individual R, G, B (0 – 255) values of each pixel 

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB) 

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number 

All the data was saved to a .txt file to be trained on later. 

Training & Accuracy of Neural Network 

Because we reduced the resolutions of the images in the preprocessing, training time for the 48 

images was incredibly short: 5-15 seconds.  

After training a successful model, here were our results. 
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As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an 

indication of over-fitting the training data, but the network was able to successfully predict our 

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other 

words, when we gave the network new data, it was able to successfully determine whether the 

gold mineral was in the left, right, or center.  
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Gold Mineral Detection Method 

Conceptualization and OpenCV: C63, C64, C70, C76, C77 

OpenCV Testing: C84, C85, C105, C106 

Official TensorFlow Model: C110, C111 

Custom neural network: C112, C113, C114 

Final decision of official TensorFlow Model: C115 

To finally end up with our implementation for the detection of the gold mineral, we went over 

3 options: OpenCV, our own neural network, and the official TensorFlow Lite model for 

sampling. We felt that using color sensor would be too cumbersome given that we have a 

camera on the robot which we can do analysis on. 

The reason we decided not to use OpenCV was because it could not run easily in parallel with 

Vuforia, and had too much overhead for the problem it was solving. We decided not to use our 

custom neural network because it did not have additional output like x position or estimated 

angle, unlike the offical TensorFlow neural network. In the end, we went with the official 

version for its robustness and availability of options. 

Our TensorFlow Neural Network: 

 

Official TensorFlow Neural Network: 
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Gold Mineral Decision Algorithm 

See engineering notebook entries: C121, C122, C128, C129, C130 

Since our robot was only able to see two minerals on the field, we had to write an algorithm to 

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw 

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on 

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was 

on the right of the 2 right minerals, it would be on the right. 
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Vuforia Listener 

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.) 

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique 

approach in capturing these events. In Vuforia, there is a class known as the 

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark 

when one knows exactly when they will see a VuMark. However, due to the variable nature of 

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding 

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe 

and efficient way. 

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault 

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the 

methods in the default listener, we realized that there was no convenient method to realize 

when a new VuMark was found, so we modified one of the existing methods to let us know 

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be 

notified properly.  

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program 

would work consistently on multiple threads while being able to share information between the 

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of 

information between the threads. If we did not, there is the slight chance that when two 

threads modify the same variable at the same time, there could be a loss of information. The 

usage of Atomic variables notifies the robot in the middle of following the path found by the 

Pathfinding Algorithms to stop what it is doing and realign against the VuMark. 
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Text-To-Speech (TTS) 

For additional fun and utility, we incorporated the Google Text-to-Speech technology that 

allows text to be read aloud in a human-like fashion.  

On the field, our robot likes to let us know how it is doing through a variety of phrases, 

including when it is initialized. Certain phrases include:  

• “Initialized Vuforia” 

• “Initialized Tensor Flow” 

• “Initialization Ready” 

• “Initialized Gyro” 

Over time, hearing these phrases can become cumbersome. However, our robot likes to spice 

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism 

and loyalty to our team. Certain phrases it uses include: 

• “Go MOE” 

• “Whooo!” 

• “Hi _____” (where _____ may be someone’s name) 

o Note: this is pre-programmed, we have not yet integrated the facial recognition 

technology for the robot to detect people on its own 

Our robot also has a fondness for music, which it may play on or off the field. More than 

anything else, our robot’s personality makes interacting with it more interesting and fun! : ) 
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MOE, Miracles of Engineering 

FTC Team 365 

2018-19 Control Award 

Submission 
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Introduction 

Throughout the design of our robot, we have kept one universal theme in mind. 
User Friendliness: The measure of how robust, simple, easy to 

maintain, and easy to use a robot is. 

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have 

tried to keep the number of important components on the robot (sensors, 

motors, etc...) to a minimum while still vying to accomplishing our goals in mind. 

The result has been a robot that places more importance on intricate algorithms 

than sensors.  

Our robot does utilize a good number of sensors, but wherever one can be 

omitted (for example: a camera rather than a color sensor), we take that option. 

This results in less environmental variables that can impact robot performance, as 

the robot relies on its algorithms and math to do computation in the place of 

sensors that could sometimes provide faulty data. 

When driving the robot, we try to keep controls as simple as possible to allow the 

driver to focus on making important decisions rather than be distracted or 

bothered with the controlling of the robot. 

Along with programming for the sake of the robot in competition, we have also 

programmed for the sake of learning (such as creating our own Neural Network!) 

to involve ourselves in other forms and kinds of programming. For an explanation 

on our thought process & more experimental procedures, view the Additional 

Summary Information. Also, below most titles will be a listing of notebook pages 

grouped together by what stage in the development process they show. 

The 6 main sections are as follows: 

1. Autonomous Objectives 

2. Sensors Used 

3. Key Algorithms 

4. Driver Controlled Enhancements 

5. Autonomous Program Diagrams 

6. Additional Summary Information  
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Autonomous Objectives 

The following objectives are what we planned for in our robot’s autonomous 

modes. 

• Autonomous Routine: (82 pts.) 

o Landing – dropping off of the lander (30 pts.) 

o Sampling – knocking off the gold mineral (25 pts.) 

o Sampled gold mineral placed in depot (2 pts.) 

o Claiming – dropping the Team Marker in the depot (15 pts.) 

o Parking – ending autonomous in the crater (10 pts.) 

• Algorithmic & Programming Objectives: 

o Establishing Field Grid & MOEPS (MOE Positioning System) 

o Localization 

o Multithreading 

o Accurate Turning Methods 

o Accurate Pathfinding with A* and Dijkstra’s Algorithms 

▪ Pathfinding Error Correction 

▪ “Rotational Symmetry” 

▪ Realignment 

o Error Correction & Fallback Plan B Routines 

Although not completely relevant in explaining the controls and actions of the 

robot, we included additional algorithms and details in our programming process 

that we felt to be of importance in the Additional Summary Information. 
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Sensors Used 

 

Encoders (3) 

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the 

front-left wheel, while the other is on the front-right wheel. 

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for 

precise, controlled motion of the lift motor. 
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Inertial Measurement Unit (IMU) (1) 

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the 

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that 

measures rotation parallel to the ground for accuracy in any turns or rotational movement of 

the robot. 

Logitech Webcam (1) 

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera 

allows for the phone to be safely protected within the robot, making sure that nothing goes 

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks. 

REV 2m Distance Sensor (2) 

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction. 

The sensor is primarily used for telling distance away from the walls of the field. 

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The 

sensor is primarily used for telling distance away from the walls of the field. 

Touch Sensor (1) 

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator 

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in 

hanging. Since the lift has to have the same starting point across all robot autonomous modes, 

a standard starting point is important.   
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Key Algorithms & Constructs 

Field Grid & MOEPS (MOE Positioning System) 

Conceptualization and implementation: C7, C8, C13, C14 

Due to the importance of the two positioning systems described below in our programming 

structures, we have affectionately coined the term MOE Position System, or MOEPS, to 

describe the systems. 

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To 

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72). 

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit 

= 2 inches. 

12 feet = 144 inches = 72 MOE units 

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners 

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot. 
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To ease our programming, we made a Java class called PointMap to hold all important (x, y) 

points on the field with English names. While programming, we were able to refer to these 

names rather than the actual (x, y) coordinate. The following places were labelled as important: 

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At 

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot 

Along with a positional (x, y) global map, we wanted to create an orientational global map to 

establish a consistent angle at any point on the map. The angle map was modeled off of the 

Unit Circle, which was used as a standard for marking angles on the map. 
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Localization 

See engineering notebook entries: C42, C43, C146, C147, C148 

In terms of our programming team, localization means to find out the robot’s exact global (x, y) 

position on the field. In this case, the robot would have to find out its global (x, y) position on 

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of 

the Vuforia image recognition technology and the REV 2m Distance Sensor. 

VuMark Localization 

When the robot’s webcam sees a 

VuMark, the following steps are 

taken:                                                                                                                  

1. Extrapolate horizontal (x) and 

vertical (y) distance from the 

VuMark using Vuforia                                                                                                              

2. Scale the x, y distance into our 

2-inch units – this is done by 

multiplying the values by the 

scalar 1/50                                                                                                                      

3. Depending on the VuMark, 

subtract the x, y values as 

appropriate – each VuMark has a 

distinct x, y position on the field, 

so subtract the robot’s local x, y 

position from the VuMark from 

the VuMark’s global position 

VuMark Localization on the 

field 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E56



 

Distance Sensor Localization 

Localization using the distance sensor is similar to the VuMark Localization method, but is less 

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used 

when no VuMarks are available and localization is necessary.  

In this case, the following steps are taken:                                                                         1. Get vertical and 

horizontal distance in inches from wall with distance sensors                                                                         2. 
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Subtract inches from 

wall (x, y) position                                                        

3. Resulting (x, y) 

coordinate is the 

robot’s global location 
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Multithreading 

Implementation of lift mechanism: C140 

Implementation of realignment: C58, C59 

Multithreading is a technique by which a single set of code can be used by several processors at 

different stages of execution. In other words, a program can have multiple sets of instructions 

running at the same time. With multithreading, the robot is able to do more than one task at 

any given time. Since our robot is trying to accomplish all standard autonomous points, time is 

often cut close to 30 seconds.  

Without the use of multithreading, the robot’s autonomous routine would have to speed up 

its motors significantly to meet the allotted 30 seconds. This speeding up results in less 

accuracy, resulting in an autonomous that is more prone to error.  

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally 

use our own threads or pull from other threads for the following purposes: 

• Bringing down the lift mechanism used for dropping/hanging 

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information 

for more details) 

We also used Atomic variables for thread-safe operation. When a global variable is dealt with 

between 2 or more threads, there is always the danger of it leaking data when operations on it 

are done at the same time. Since using a raw variable without synchronization or any other 

standard is considered bad practice, we decided to use Atomic variables for thread-safe 

operation. This way, when communicating between the Main Robot thread and the Vuforia 

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of 

data between the two threads.   
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Turning Methods 

Conceptualization and implementation: C31, C32 

Turning in autonomous has to be precise to the degree for repeatable results, which is why 

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by 

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we 

are within the correct angle.  

Field-Centric Turning & Robot-Centric Turning 

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the 

robot turns to a given global angle on the field. 

In robot-centric turning the robot turns to a given angle relative to itself.  

Robot-centric vs. Field-centric Turning: 

 

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric 

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the 

orientation, the robot will always turn to the same 90° mark in field-centric turning. 
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A* Pathfinding Algorithm & Dijkstra’s Algorithm 

Conceptualization and implementation of old linear pathfinding algorithm (not 

used on robot): C42, C43 

Conceptualization and implementation: C46, C47 

Implementation and testing: C50, C51 

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93 

Radius and size reductions: C97, C98, C99 

2nd Stage Debugging: C104, C105 

8-Directional Movement: C128, C129 

3rd Stage Testing: C146 

“Rotational Symmetry”: C150, C151 

Introduction 

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its 

destination. In many autonomous pathings, whenever there is a slight disturbance, the 

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot 

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on 

the field and calculates on its own how to reach the destination. 

The A* Pathfinding Algorithm (pronounced A Star) is similar to the popular Dijkstra’s Algorithm, 

which is used for finding the shortest paths between nodes in a graph. The only difference 

between the two is that the A* Algorithm utilizes a “heuristic function”, or an approximation 

function, to approximate a faster solution to Dijkstra’s algorithm. Dijkstra’s algorithm checks 

many more cases than the A* Algorithm, therefore taking longer to arrive at a similar answer. 

Since the field we are using is 72x72 (5184) nodes, we wanted to guarantee that processing 

speed would be optimal in all situations and have two approaches available to use. The 

algorithms commonly deal with graphs shown like the one below, but had to be specially 

adapted in our case to work with a 2D grid. 

Visual representation of traditional graph in computer science: 
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To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity 

(when using lists) of O(N2) where N = number of nodes on the graph, while A* has a time 

complexity of O(bd), where b = branching factor and d = depth of the solution on the search 

tree. Note that the time complexity of A* is worse when using a very expensive heuristic cost 

function, but we are using the simple Euclidean distance, or the distance formula:  

 

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B. 

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and 

Northwest. 

Setup 

To utilize the A* and Dijkstra algorithms, we needed to first setup a graph. To accomplish this, 

we took a 2D image of the field from Game Manual 2. After that, we wrote a Python script 

(utilizing the PIL imaging library) to go through the image, converting it to points we deemed as 

barriers (white) and points we deemed as free space the robot could travel on (black). This 

conversion was done through a color-based threshold. In essence, the gray parts of the map 

were free space while the other colors were barriers. The output was an image with the 

converted points as well as a 72x72 2-dimensional array that we would be able to use as our 

graph for the A* algorithm. Also, the image was flipped because we wanted [0,0] of the 2D 

array to be the corner of the red depot, and [71,71] of the 2D array to be the corner of the blue 

depot. 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E62



 

Mapped FTC Field (Visual Representation of Array) 

 1 (or white) = point a robot cannot travel on 

 0 (or black) = point a robot can travel on 
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The original conversion had some errors, because places (depot, lines near the lander, etc...) were 

marked in white when they should have been open space. To fix this, we manually changed some values 

in the array. Since most of the conversion work was done by the Python script, this only took a few 

minutes. 

The above image is what the output array looked like visually. The barriers shown in the image above 

are represented by 1s, while the free space shown in the image above are represented by 0s.  

Implementation 

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that 

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a 

simulation to show the A* Algorithm’s path from any Point A to Point B visually: 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E64



Initial Simulation

 

As complications with the algorithm increased, there was a need for a better simulation that more 

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the 

the robot (the green square), step by step, moving through the field. 

Screenshot of Final Simulation 

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2 
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To now use the algorithm in practice, we had to convert the results into a usable format by writing an 

algorithm to do so. 

Path Conversion Algorithm 

(Input) - Original Pathfinding Results: 
A series of points describing each point to go 
from point A to point B. 
 
For example, getting from (0,0) to (5,5) could be: 
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)  
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) --> 
(5, 4) --> (5, 5) 
 

(Output) - Usable Results: 
The number of inches in each direction the robot 
has to go, in order (each unit is 2 inches). 
 
For example, getting from (0,0) to (5,5) could be: 
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2 
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2 
in.  
--> FORWARD 8 in. 

 

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction 

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated 

into movements for the robot based on encoder ticks. The result of this extensive process is a robust 

and repeatable movement system that allows the robot to figure out its own path when given two 

points on the field. This simplifies the process of adjusting and programming autonomous, as well as 

allowing for a more robust and dynamic movement system.  

Pathfinding Algorithm Error Correction 
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The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few 

issues we had to fix in order of importance. 

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while 

the robot actually comprised at least a circle of many points with radius about 10 inches. 

This led to the edges of the robot crashing into parts of the field (lander, crater, 

sampling, etc...) while its center thought it was following the pathfinding algorithms as a 

single small point.  

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end 

destination due to slight turning while making up, down, left, and right movements. 

Error #1 – Size Corrections 

Conceptualization and implementation: C55, C97 

Second iteration: C98, C99 

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the 

robot as a single point, we treated it as a collection of multiple points – when put together, 

these points would form the robot rather than one small point. 

 

Error #2 – Turn Corrections 

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A* 

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A* 

algorithm.  
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If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct 

angle by again utilizing the gyro to turn back into position.  

“Rotational Symmetry” 

Conceptualization and Implementation: C150, C151 

Another feature that we added to the pathfinding algorithm is the idea of “rotational 

symmetry”. In other words, a given set of output instructions can be rotated by certain number 

of degrees while still preserving the relative directions of each movement. 

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of 

robot movements. Since moving forwards and backwards is always faster than strafing, 

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and 

rotate the pathing instructions. The robot can then quickly turn and apply the rotated 

instructions to allow for more forwards and backwards movements, resulting in a more 

robust movement. 

Examples of rotations done on set of output instructions: 
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The algorithm is accomplished by setting a numerical value to each of the directions in 

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This 

simple numbering pattern makes rotation much simpler than writing each direction’s rotation 

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the 

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes 

2). 

Visualization of Direction to Number mapping, along with degrees associated with rotations: 

 

This system’s simplicity becomes apparent when put into practice. For example, if an 

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it 

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value, 

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90° 

clockwise rotation from North. 

Realignment 
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Conceptualization and Implementation: C58, C59 

As there is always a chance for error, such as another robot or debris in the way of a robot, a 

given robot might be knocked out of its planned path. This is another application for the 

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is 

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary 

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at 

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that 

it sees a new VuMark, the robot is able to get back on path. 

The diagram below illustrates this process: 

  

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point 

a. Pathfinding Algorithms calculate a path to the destination (#3) 

b. Robot follows the pathing with encoders (blue arrows) 

2. The robot is knocked off of its pathing by debris 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E70



a. A new VuMark is seen and the robot stops its original pathing (blue 

arrows) and relocalizes, figuring out its new (x, y) point 

b. Pathfinding Algorithms calculate a path to the destination (#3) 

c. Robot follows the pathing with encoder (purple arrows) 

3. Destination is reached 
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Error Correction & Fallback Plan B Routines 

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental 

goal of autonomous is to have consistent, reproducible results, we try to better handle some 

errors that may result in a deviation from any planned autonomous route. 

• Turn Corrections 

• Distance Sensor Fallback 

Turn Corrections 

Implementation: C58, C59 

In many of the routines and paths taken during autonomous, due to the nature of our 

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of 

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly 

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient, 

results in a faulty autonomous. To cut back on this, we define a given angle error range for any 

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts 

what it is doing to turn back into proper position. 

The diagram below shows the turn correction process. 

 

Distance Sensor Fallback 

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback 

when they produce errors. When getting readings in the middle of autonomous, a distance 
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sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If 

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed 

point to plug into the Pathfinding Algorithms rather than a more accurate point from the 

distance sensors. 
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Sampling Algorithm 

Our team tried using a variety of sampling methods, including the official TensorFlow neural 

network included in the SDK, creating our own neural network (see Additional Summary 

Section), and OpenCV for color detection. However, one key flaw with all of these methods was 

inconsistency. Even though the official TensorFlow network worked most of the time, we found 

that when placed on a competition field with a yellow background (like a gym floor), gold 

minerals were sometimes improperly recognized. This led to complications during 

competitions. Due to the flaws with the official TensorFlow network, our robot very often 

picked the wrong mineral to sample. 

To solve this issue, we wrote our own custom algorithm for the sake of sampling. 

Steps: 

1. Take camera data from Webcam  

 

Example of camera data. 

2. To remove any small splotches of yellow in the background (or any other strange color), 

reduce the resolution of the image. 
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Reduced resolution of original image. 

3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation, 

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).  

 

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold 

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold 

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision 

Algorithm in Additional Summary Section) 
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Driver Controlled Enhancements 

Adjustable Field-Centric Movement 

Conceptualization and implementation: C130, C131, C141 

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this, 

we are able to use field-centric motion rather than robot-centric motion. For the ease of the 

driver, we make all movements relative to the field rather than relative to the robot.  

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y 

 

This diagram represents the rotation of axes that underlies the principles in field centric 

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x 

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a 

custom 0° point for the robot. 

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value 

for FWD (forward), STR (strafe), or ROT (rotation). 
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The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so 

that field-centric movement occurs. 

Lander Based Movement 

Conceptualization and implementation: C141 

Our robot also has “lander specialized” movement that allows for fine turning before hanging 

the robot. The D-pad allows for smaller adjustments in four-directional movement 

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller 

adjustments in turning to fix orientation before raising the lift to hang. 

Controls 

Gamepad 1 

Left Joystick: Field-centric movement in all directions 

Right Joystick: Rotational movement (turns) 

A: Reset 0° point (forward heading) for field-centric movement 

Left Bumper: Turn slowly left (see Lander Based Movement) 

Right Bumper: Turn slowly right  (see Lander Based Movement) 

D-Pad: (see Lander Based Movement) 
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UP → Move slowly forward 

DOWN → Move slowly backward 

LEFT → Strafe slowly left 

RIGHT → Strafe slowly right 
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Autonomous Routines 

Conceptualization and testing of routine: C76 

Iterative improvements, testing, and debugging: C84, C85 

Testing environment fabrication: C104 

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122 

Testing and evaluations: C140, C141, C145 
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The image above represents our autonomous routine for the depot starting points. For the 

crater starting points, we only sample the gold mineral. We plan on executing the following 

steps for the depot starting points (the crater starting points are only the first two steps): 

1. Landing & Detecting gold mineral 

2. Travelling to and knocking off gold mineral 

3. Travelling to depot 

4. Deposit the Team Marker and leave gold mineral 

5. Travel to crater & extend arm into crater 

Initialization 

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map. 

2. Initialize REV IMU sensor  

3. Initialize Vuforia 

4. Initialize TensorFlow 

5. Reset Team Marker Servo to position 1 

6. Reset Crater Extension Arm to position 1 

1. Landing & Detecting gold mineral (30 pts.) 

1. Use linear actuator to move lift up for given # of encoder tics 

a. The robot touches the floor and the claw goes above the top of the handle on 

the lander 

2. Using multithreading, lower the lift back to its starting position 

a. (see Multithreading in Key Algorithms) 

b. The program continues on without waiting for the process to finish because of 

the multithreading 

3. Turn ~70° to see 2 minerals and decide which is gold 

a.  (see Sampling Algorithm in Key Algorithms) 

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or 

center 

2. Landing & Detecting gold mineral (25 pts.) 

1. Move forward appropriate # of inches to knock off gold mineral from its starting 

position 

2. Continue moving forward to safely clear other 2 silver minerals 

3. Travelling to depot 

1. Turn appropriate number of degrees to face the depot 

2. Move forward appropriate # of inches to reach the depot 
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a. Note that the gold mineral is kept in control of the robot through the metal plate 

on its front – similar to a bulldozer 

4. Deposit the Team Marker and leave gold mineral (17 pts.) 

1. Turn appropriate # of degrees for front of robot to face the front/back wall 

2. Localize and figure out (x, y) posi8tion on the MOEPS global field grid by using distance 

sensors 

a. (See Distance Sensor Localization in Localization) 

b. If the distance sensors have an error in measurement, fallback to Plan B 

3. Turn appropriate number of degrees for left side of robot to face corner of field 

4. Drop off Team Marker by setting Team Marker servo to position 0 

5. Calculate path to crater using Pathfinding Algorithms 

a. Plan A: Use (x, y) position from distance sensors 

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A 

c. (see A* Pathfinding Algorithm & Dijkstra’s Algorithm) 

5. Travel to crater & extend arm into crater (10 pts.) 

1. Turn ~90° right for the back to face the crater 

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation 

a. (see “Rotational Symmetry” in A* Pathfinding Algorithm & Dijkstra’s Algorithm) 

3. Follow pathing to reach crater 

4. Extend arm 

5. Drive backwards to guarantee arm is in crater 
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Additional Summary Information 

Creating An Artificial Neural Network (ANN) 

Conceptualization and implementation: C110, C111, C112, C113, C114, C115 

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network 

with TensorFlow that could distinguish the left, center, or right position of the gold in the 

sampling minerals.  

Choosing the Correct Structure 

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a 

commonly used technique to train a neural network based around gradient descent.  

 

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in 

each hidden layer. The final output has 3 possibilities. This neural network requires less training 

data because the problem at hand is fundamentally clear in terms of processing; there are no 
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complex edge detections required. All the neural network has to do is distinguish between 

yellow and white and their locations in the images.  

Acquiring Training Data & Preprocessing (Total of 48 Images) 

 

Key ideas in images for the neural network: 

• Changed background of images to show background does not matter 

• Changed lighting of images to show lighting does not matter 

• Changed tilt of images to show tilt does not matter 

• Did not change order of minerals to show only ordering of minerals matter 

NOTE: The preprocessing was automated using Python scripts to save time. 

The reason the images’ resolutions were reduced was due to the fact that training the network 

would require more time. Although training the network at full resolution would be fine, it 
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would possibly take a few minutes, and this can get cumbersome when refining and tweaking 

the data. We felt predictions could be made just as well at reduced resolution. 

The process of converting to a Base-10 representation of hex #RRGGBB values: 

1. Take individual R, G, B (0 – 255) values of each pixel 

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB) 

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number 

All the data was saved to a .txt file to be trained on later. 

Training & Accuracy of Neural Network 

Because we reduced the resolutions of the images in the preprocessing, training time for the 48 

images was incredibly short: 5-15 seconds.  

After training a successful model, here were our results. 
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As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an 

indication of over-fitting the training data, but the network was able to successfully predict our 

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other 

words, when we gave the network new data, it was able to successfully determine whether the 

gold mineral was in the left, right, or center.  
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Gold Mineral Decision Algorithm 

See engineering notebook entries: C121, C122, C128, C129, C130 

Since our robot was only able to see two minerals on the field, we had to write an algorithm to 

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw 

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on 

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was 

on the right of the 2 right minerals, it would be on the right. 
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Vuforia Listener 

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.) 

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique 

approach in capturing these events. In Vuforia, there is a class known as the 

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark 

when one knows exactly when they will see a VuMark. However, due to the variable nature of 

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding 

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe 

and efficient way. 

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault 

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the 

methods in the default listener, we realized that there was no convenient method to realize 

when a new VuMark was found, so we modified one of the existing methods to let us know 

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be 

notified properly.  

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program 

would work consistently on multiple threads while being able to share information between the 

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of 

information between the threads. If we did not, there is the slight chance that when two 

threads modify the same variable at the same time, there could be a loss of information. The 

usage of Atomic variables notifies the robot in the middle of following the path found by the 

Pathfinding Algorithms to stop what it is doing and realign against the VuMark. 
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Text-To-Speech (TTS) 

For additional fun and utility, we incorporated the Google Text-to-Speech technology that 

allows text to be read aloud in a human-like fashion.  

On the field, our robot likes to let us know how it is doing through a variety of phrases, 

including when it is initialized. Certain phrases include:  

• “Initialized Vuforia” 

• “Initialization Complete” 

• “Initialized Gyro” 

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice 

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism 

and loyalty to our team. Certain phrases it uses include: 

• “Go MOE” 

• “Whooo!” 

• “Hi _____” (where _____ may be someone’s name) 

o Note: this is pre-programmed, we have not yet integrated the facial recognition 

technology for the robot to detect people on its own 

Our robot also has a fondness for music, which it may play on or off the field. More than 

anything else, our robot’s personality makes interacting with it more interesting and fun! : ) 
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MOE, Miracles of Engineering 

FTC Team 365 

2018-19 Control Award 

Submission 
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Introduction 

Throughout the design of our robot, we have kept one universal theme in mind. 
User Friendliness: The measure of how robust, simple, easy to 

maintain, and easy to use a robot is. 

To accomplish this goal of user friendliness in Autonomous and TeleOp, we have 

tried to keep the number of important components on the robot (sensors, 

motors, etc...) to a minimum while still vying to accomplishing our goals in mind. 

The result has been a robot that places more importance on intricate algorithms 

than sensors.  

Our robot does utilize a good number of sensors, but wherever one can be 

omitted (for example: a camera rather than a color sensor), we take that option. 

This results in less environmental variables that can impact robot performance, as 

the robot relies on its algorithms and math to do computation in the place of 

sensors that could sometimes provide faulty data. 

When driving the robot, we try to keep controls as simple as possible to allow the 

driver to focus on making important decisions rather than be distracted or 

bothered with the controlling of the robot. 

Along with programming for the sake of the robot in competition, we have also 

programmed for the sake of learning (such as creating our own Neural Network!) 

to involve ourselves in other forms and kinds of programming. For an explanation 

on our thought process & more experimental procedures, view the Additional 

Summary Information. Also, below most titles will be a listing of notebook pages 

grouped together by what stage in the development process they show. 

The 6 main sections are as follows: 

1. Autonomous Objectives 

2. Sensors Used 

3. Key Algorithms 

4. Driver Controlled Enhancements 

5. Autonomous Program Diagrams 

6. Additional Summary Information  
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Autonomous Objectives 

The following objectives are what we planned for in our robot’s autonomous 

modes. 

• Autonomous Routine: (82 pts.) 

o Landing – dropping off of the lander (30 pts.) 

o Sampling – knocking off the gold mineral (25 pts.) 

o Sampled gold mineral placed in depot (2 pts.) 

o Claiming – dropping the Team Marker in the depot (15 pts.) 

o Parking – ending autonomous in the crater (10 pts.) 

• Algorithmic & Programming Objectives: 

o Establishing Field Grid & MOEPS (MOE Positioning System) 

o Localization 

o Multithreading 

o Accurate Turning Methods 

o Accurate Pathfinding with Intelligent Algorithms 

▪ Pathfinding Error Correction 

▪ “Rotational Symmetry” 

▪ Realignment 

o Error Correction & Fallback Plan B Routines 

Although not completely relevant in explaining the controls and actions of the 

robot, we included additional algorithms and details in our programming process 

that we felt to be of importance in the Additional Summary Information. 
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Sensors Used 
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Encoders (3) 

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the 

front-left wheel, while the other is on the front-right wheel. 

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for 

precise, controlled motion of the lift motor. 

1: Encoder placed on the motor controlling the linear slide of our harvester. The encoder is 

used for making sure the slide does not swing out uncontrollably during autonomous. 

1: Encoder placed on the motor controlling the bucket where minerals are deposited in the 

lander. The encoder is used for precise, controlled motion of the motor. 

Inertial Measurement Unit (IMU) (1) 

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the 

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that 
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measures rotation parallel to the ground for accuracy in any turns or rotational movement of 

the robot. 

Logitech Webcam (1) 

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera 

allows for the phone to be safely protected within the robot, making sure that nothing goes 

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks. 

REV 2m Distance Sensor (2) 

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction. 

The sensor is primarily used for telling distance away from the walls of the field. 

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The 

sensor is primarily used for telling distance away from the walls of the field. 

Color Sensor (2) 

1: Color sensor placed on the front of the robot, facing the ground to align with lines during 

autonomous. 

1: Color sensor placed on the back of the robot, facing the ground to align with lines during 

autonomous. 

Touch Sensor (1) 

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator 

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in 

hanging. Since the lift has to have the same starting point across all robot autonomous modes, 

a standard starting point is important.   
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Key Algorithms & Constructs 

Field Grid & MOEPS (MOE Positioning System) 

Conceptualization and implementation: C7, C8, C13, C14 

Due to the importance of the two positioning systems described below in our programming 

structures, we have affectionately coined the term MOE Position System, or MOEPS, to 

describe the systems. 

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To 

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72). 

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit 

= 2 inches. 

12 feet = 144 inches = 72 MOE units 

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners 

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot. 
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To ease our programming, we made a Java class called PointMap to hold all important (x, y) 

points on the field with English names. While programming, we were able to refer to these 

names rather than the actual (x, y) coordinate. The following places were labelled as important: 

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At 

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot 

Along with a positional (x, y) global map, we wanted to create an orientational global map to 

establish a consistent angle at any point on the map. The angle map was modeled off of the 

Unit Circle, which was used as a standard for marking angles on the map. 
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Localization 

See engineering notebook entries: C42, C43, C146, C147, C148 

In terms of our programming team, localization means to find out the robot’s exact global (x, y) 

position on the field. In this case, the robot would have to find out its global (x, y) position on 

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of 

the Vuforia image recognition technology and the REV 2m Distance Sensor. 

VuMark Localization 

When the robot’s webcam sees a 

VuMark, the following steps are 

taken:                                                                                                                  

1. Extrapolate horizontal (x) and 

vertical (y) distance from the 

VuMark using Vuforia                                                                                                              

2. Scale the x, y distance into our 

2-inch units – this is done by 

multiplying the values by the 

scalar 1/50                                                                                                                      

3. Depending on the VuMark, 

subtract the x, y values as 

appropriate – each VuMark has a 

distinct x, y position on the field, 

so subtract the robot’s local x, y 

position from the VuMark from 

the VuMark’s global position 

VuMark Localization on the 

field 
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Distance Sensor Localization 

Localization using the distance sensor is similar to the VuMark Localization method, but is less 

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used 

when no VuMarks are available and localization is necessary.  

In this case, the following steps are taken:                                                                         1. Get vertical and 

horizontal distance in inches from wall with distance sensors                                                                         2. 
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Subtract inches from 

wall (x, y) position                                                                         

3. Resulting (x, y) 

coordinate is the 

robot’s global location 
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Multithreading 

Implementation of lift mechanism: C140 

Implementation of realignment: C58, C59 

Multithreading is a technique by which a single set of code can be used by several processors at 

different stages of execution. In other words, a program can have multiple sets of instructions 

running at the same time. With multithreading, the robot is able to do more than one task at 

any given time. Since our robot is trying to accomplish all standard autonomous points, time is 

often cut close to 30 seconds.  

Without the use of multithreading, the robot’s autonomous routine would have to speed up 

its motors significantly to meet the allotted 30 seconds. This speeding up results in less 

accuracy, resulting in an autonomous that is more prone to error.  

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally 

use our own threads or pull from other threads for the following purposes: 

• Bringing down the lift mechanism used for dropping/hanging 

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information 

for more details) 

We also used Atomic variables for thread-safe operation. When a global variable is dealt with 

between 2 or more threads, there is always the danger of it leaking data when operations on it 

are done at the same time. Since using a raw variable without synchronization or any other 

standard is considered bad practice, we decided to use Atomic variables for thread-safe 

operation. This way, when communicating between the Main Robot thread and the Vuforia 

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of 

data between the two threads.   
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Turning Methods 

Conceptualization and implementation: C31, C32 

Turning in autonomous has to be precise to the degree for repeatable results, which is why 

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by 

time, we turn by setting the powers the motors and simply wait for the IMU to indicate that we 

are within the correct angle.  

Field-Centric Turning & Robot-Centric Turning 

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the 

robot turns to a given global angle on the field. 

In robot-centric turning the robot turns to a given angle relative to itself.  

Robot-centric vs. Field-centric Turning: 

 

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric 

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the 

orientation, the robot will always turn to the same 90° mark in field-centric turning. 
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Jump Point Search / A* / Dijkstra’s Pathfinding 

Algorithm 

Conceptualization and implementation of old linear pathfinding algorithm (not 

used on robot): C42, C43 

Conceptualization and implementation: C46, C47 

Implementation and testing: C50, C51 

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93 

Radius and size reductions: C97, C98, C99 

2nd Stage Debugging: C104, C105 

8-Directional Movement: C128, C129 

3rd Stage Testing: C146 

“Rotational Symmetry”: C150, C151 

Introduction 

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its 

destination. In many autonomous pathings, whenever there is a slight disturbance, the 

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot 

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on 

the field and calculates on its own how to reach the destination. 

The A* (pronounced A Star) and Jump Point Search Algorithms are similar to the popular 

Dijkstra’s Algorithm, which is used for finding the shortest paths between nodes in a graph. The 

primary difference between Dijkstra’s and the other two is that the pair utilize a “heuristic 

function”, or an approximation function, to approximate a faster solution to Dijkstra’s 

algorithm. Dijkstra’s algorithm checks many more cases than the A* Algorithm, therefore taking 

longer to arrive at a similar answer. Since the field we are using is 288x288 (82944) nodes, we 

wanted to guarantee that processing speed would be fast. The algorithms commonly deal with 

graphs shown like the one below, but had to be specially adapted in our case to work with a 2D 

grid. 

Visual representation of traditional graph in computer science: 
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To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity 

(when using lists) of O(N2) where N = number of nodes on the graph, while A* generally has a 

time complexity of O(bd), where b = branching factor and d = depth of the solution on the 

search tree. However, both of these algorithms have a very slow runtime in certain 

circumstances, taking over 20 seconds to run. This is unacceptable when run in autonomous, 

which only has a period of 30 seconds. The Jump Point Search algorithm is an optimized version 

of the A* pathfinding algorithm that consistently brought our runtime below 2 seconds.  

Note that the time complexity of A*/Jump Point Search is worse when using a very expensive 

heuristic cost function, but we are using the simple Euclidean distance, or the distance formula:  

 

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B. 

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and 

Northwest. 

Setup 

To utilize the pathfinding algorithms, we needed to first setup a graph. To accomplish this, we 

took a 2D image of the field from Game Manual 2. After that, we wrote a Python script (utilizing 

the PIL imaging library) to go through the image, converting it to points we deemed as barriers 

(white) and points we deemed as free space the robot could travel on (black). This conversion 

was done through a color-based threshold. In essence, the gray parts of the map were free 

space while the other colors were barriers. The output was an image with the converted points 

as well as a 288x288-dimensional array that we would be able to use as our graph for the 

pathfinding algorithms. Also, the image was flipped because we wanted [0,0] of the 2D array to 

be the corner of the red depot, and [287,287] of the 2D array to be the corner of the blue 

depot. 
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Mapped FTC Field (Visual Representation of Array) 

 1 (or white) = point a robot cannot travel on 

 0 (or black) = point a robot can travel on 
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The original conversion had some errors, because places (depot, lines near the lander, etc...) were 

marked in white when they should have been open space. To fix this, we manually changed some values 

in the array. Since most of the conversion work was done by the Python script, this only took a few 

minutes. 

The above image is what the output array looked like visually. The barriers shown in the image above 

are represented by 1s, while the free space shown in the image above are represented by 0s.  

Implementation 

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that 

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a 

simulation to show the pathfinding algorithm’s path from any Point A to Point B visually: 
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Initial Simulation

 

As complications with the algorithm increased, there was a need for a better simulation that more 

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the 

the robot (the green square), step by step, moving through the field. 

Screenshot of Final Simulation 

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2 
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To now use the algorithm in practice, we had to convert the results into a usable format by writing an 

algorithm to do so. 

Path Conversion Algorithm 

(Input) - Original Pathfinding Results: 
A series of points describing each point to go 
from point A to point B. 
 
For example, getting from (0,0) to (5,5) could be: 
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)  
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) --> 
(5, 4) --> (5, 5) 
 

(Output) - Usable Results: 
The number of inches in each direction the robot 
has to go, in order (each unit is 2 inches). 
 
For example, getting from (0,0) to (5,5) could be: 
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2 
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2 
in.  
--> FORWARD 8 in. 

 

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction 

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated 

into movements for the robot based on encoder ticks. The result of this extensive process is a robust 

and repeatable movement system that allows the robot to figure out its own path when given two 

points on the field. This simplifies the process of adjusting and programming autonomous, as well as 

allowing for a more robust and dynamic movement system.  

Pathfinding Algorithm Error Correction 
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The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few 

issues we had to fix in order of importance. 

1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while 

the robot actually comprised at least a circle of many points with radius about 10 inches. 

This led to the edges of the robot crashing into parts of the field (lander, crater, 

sampling, etc...) while its center thought it was following the pathfinding algorithms as a 

single small point.  

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end 

destination due to slight turning while making up, down, left, and right movements. 

Error #1 – Size Corrections 

Conceptualization and implementation: C55, C97 

Second iteration: C98, C99 

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the 

robot as a single point, we treated it as a collection of multiple points – when put together, 

these points would form the robot rather than one small point. 

 

Error #2 – Turn Corrections 

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A* 

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A* 

algorithm.  
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If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct 

angle by again utilizing the gyro to turn back into position.  

“Rotational Symmetry” 

Conceptualization and Implementation: C150, C151 

Another feature that we added to the pathfinding algorithm is the idea of “rotational 

symmetry”. In other words, a given set of output instructions can be rotated by certain number 

of degrees while still preserving the relative directions of each movement. 

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of 

robot movements. Since moving forwards and backwards is always faster than strafing, 

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and 

rotate the pathing instructions. The robot can then quickly turn and apply the rotated 

instructions to allow for more forwards and backwards movements, resulting in a more 

robust movement. 

Examples of rotations done on set of output instructions: 
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The algorithm is accomplished by setting a numerical value to each of the directions in 

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This 

simple numbering pattern makes rotation much simpler than writing each direction’s rotation 

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the 

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes 

2). 

Visualization of Direction to Number mapping, along with degrees associated with rotations: 

 

This system’s simplicity becomes apparent when put into practice. For example, if an 

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it 

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value, 

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90° 

clockwise rotation from North. 

Realignment 
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Conceptualization and Implementation: C58, C59 

As there is always a chance for error, such as another robot or debris in the way of a robot, a 

given robot might be knocked out of its planned path. This is another application for the 

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is 

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary 

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at 

the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that 

it sees a new VuMark, the robot is able to get back on path. 

The diagram below illustrates this process: 

  

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point 

a. Pathfinding Algorithms calculate a path to the destination (#3) 

b. Robot follows the pathing with encoders (blue arrows) 

2. The robot is knocked off of its pathing by debris 
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a. A new VuMark is seen and the robot stops its original pathing (blue 

arrows) and relocalizes, figuring out its new (x, y) point 

b. Pathfinding Algorithms calculate a path to the destination (#3) 

c. Robot follows the pathing with encoder (purple arrows) 

3. Destination is reached 
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Error Correction & Fallback Plan B Routines 

Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental 

goal of autonomous is to have consistent, reproducible results, we try to better handle some 

errors that may result in a deviation from any planned autonomous route. 

• Turn Corrections 

• Distance Sensor Fallback 

Turn Corrections 

Implementation: C58, C59 

In many of the routines and paths taken during autonomous, due to the nature of our 

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of 

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly 

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient, 

results in a faulty autonomous. To cut back on this, we define a given angle error range for any 

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts 

what it is doing to turn back into proper position. 

The diagram below shows the turn correction process. 

 

Distance Sensor Fallback 

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback 

when they produce errors. When getting readings in the middle of autonomous, a distance 
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sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If 

the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed 

point to plug into the Pathfinding Algorithms rather than a more accurate point from the 

distance sensors. 
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Sampling Algorithm 

Our team tried using a variety of sampling methods, including the official TensorFlow neural 

network included in the SDK, creating our own neural network (see Additional Summary 

Section), and OpenCV for color detection. However, one key flaw with all of these methods was 

inconsistency. Even though the official TensorFlow network worked most of the time, we found 

that when placed on a competition field with a yellow background (like a gym floor), gold 

minerals were sometimes improperly recognized. This led to complications during 

competitions. Due to the flaws with the official TensorFlow network, our robot often picked the 

wrong mineral to sample. 

To solve this issue, we wrote our own custom algorithm for the sake of sampling. 

Steps: 

1. Take camera data from Webcam  

Example of camera data 

 

2. To remove any small splotches of yellow in the background (or any other strange color), 

reduce the resolution of the image. 

Reduced resolution of original image 
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3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation, 

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).  

Visualization of image after pixels below HSV threshold are removed. 

 

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold 

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold 

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision 

Algorithm in Additional Summary Section) 
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Driver Controlled Enhancements 

Adjustable Field-Centric Movement 

Conceptualization and implementation: C130, C131, C141 

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this, 

we are able to use field-centric motion rather than robot-centric motion. For the ease of the 

driver, we make all movements relative to the field rather than relative to the robot.  

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y 

 

This diagram represents the rotation of axes that underlies the principles in field centric 

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x 

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a 

custom 0° point for the robot. 

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value 

for FWD (forward), STR (strafe), or ROT (rotation). 
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The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so 

that field-centric movement occurs. 

Lander Based Movement 

Conceptualization and implementation: C141 

Our robot also has “lander specialized” movement that allows for fine turning before hanging 

the robot. The D-pad allows for smaller adjustments in four-directional movement 

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller 

adjustments in turning to fix orientation before raising the lift to hang. 

Controls 

Gamepad 1 

Left Joystick: Field-centric movement in all directions 

Right Joystick: Rotational movement (turns) 

A: Reset 0° point (forward heading) for field-centric movement 

X: Open Bucket Halfway 

B: Open Bucket Full 

Y: Toggles Tele-Op and End Game Mode 
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Left & Right Triggers: Moves Rotating Arm Up and Down in Tele-Op Mode and 

Latching Lift in End-Game Mode 

Left & Right Bumpers: Fine turning (see Lander Based Movement) 

D-Pad: (see Lander Based Movement) 

UP → Move slowly forward 

DOWN → Move slowly backward 

LEFT → Strafe slowly left 

RIGHT → Strafe slowly right 

Gamepad 2 

Left Joystick: Rotates Transition arm (wrist) up and down 

Right Joystick: Moves Linear slide in an out 

Left & Right Triggers: Intakes using harvester (independently-run with respective 

controls) 

Left & Right Bumpers: Dispenses using harvester (independently-run with 

respective controls) 
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Autonomous Routines 

Conceptualization and testing of routine: C76 

Iterative improvements, testing, and debugging: C84, C85 

Testing environment fabrication: C104 

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122 

Testing and evaluations: C140, C141, C145 
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The image above represents our autonomous routine for all possible starting points. Regardless 

of starting point, our autonomous strives to accomplish delatching, sampling, depositing team 

marker, and parking.. We plan on executing the following steps for each autonomous: 

1. Landing & Detecting gold mineral 

2. Travelling to and knocking off gold mineral 

3. Travelling to depot 

4. Deposit the Team Marker and leave gold mineral 

5. Travel to crater & extend arm into crater 

Initialization 

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map. 

2. Initialize REV IMU sensor  

3. Initialize Vuforia 

4. Reset Crater Extension Arm to position 1 

5. Have robot say “Finished initialization” through speakers to doubly confirm initialization 

1. Landing & Detecting gold mineral (30 pts.) 

1. Use linear actuator to move lift up for given # of encoder tics 

a. The robot touches the floor and the claw goes above the top of the handle on 

the lander 

2. Using multithreading, lower the lift back to its starting position 

a. (see Multithreading in Key Algorithms) 

b. The program continues on without waiting for the process to finish because of 

the multithreading 

3. Turn ~70° to see 2 minerals and decide which is gold 

a.  (see Sampling Algorithm in Key Algorithms) 

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or 

center 

2. Landing & Detecting gold mineral (25 pts.) 

1. Move forward appropriate # of inches to knock off gold mineral from its starting 

position 

2. Continue moving forward to safely clear other 2 silver minerals 

3a. Travelling to depot (Depot Start Point) 

1. Turn appropriate number of degrees to face VuMark (Rover/Moon) 

2. Move forward appropriate # of inches to read data from the VuMark (distance, angle, 

etc...) 
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3b. Travelling to depot (Crater Start Point) 

1. Turn appropriate number of degrees to face the depot 

2. Move forward appropriate # of inches to reach the depot 

3. Localize and figure out (x, y) position on the MOEPS global field grid by using Vuforia 

4. Calculate and follow path to depot using Pathfinding Algorithms 

4. Deposit the Team Marker (15 pts.) – If Depot Start Point, deposit 

gold mineral in depot (+2 pts.) 

1. Turn appropriate # of degrees for front of robot to face the front/back wall 

2. Localize and figure out (x, y) position on the MOEPS global field grid by using distance 

sensors 

a. (See Distance Sensor Localization in Localization) 

b. If the distance sensors have an error in measurement, fallback to Plan B 

3. Turn appropriate number of degrees for left side of robot to face corner of field 

4. Drop off Team Marker 

5. Calculate path to crater using Pathfinding Algorithms 

a. Plan A: Use (x, y) position from distance sensors 

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A 

c. (see Jump Point Search/A*/Dijkstra’s Pathfinding Algorithms) 

5a. Travel to crater & extend arm into crater (10 pts. – Depot Start 

Point) 

1. Turn ~90° right for the back to face the crater 

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation 

a. (see “Rotational Symmetry” in  Jump Point Search/A*/Dijkstra’s Pathfinding 

Algorithms) 

3. Follow pathing to reach crater on other alliance’s side 

4. Extend arm 

5. Drive backwards to guarantee arm is in crater 

5b. Travel to crater & extend arm into crater (10 pts. – Crater Start 

Point) 

6. Follow pathing to reach crater  

7. Extend arm 

8. Drive backwards to guarantee arm is in crater 

 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E127



  

MOE FTC 365 Engineering Notebook — Rover Ruckus

E128



Additional Summary Information 

Creating An Artificial Neural Network (ANN) 

Conceptualization and implementation: C110, C111, C112, C113, C114, C115 

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network 

with TensorFlow that could distinguish the left, center, or right position of the gold in the 

sampling minerals.  

Choosing the Correct Structure 

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a 

commonly used technique to train a neural network based around gradient descent.  

 

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in 

each hidden layer. The final output has 3 possibilities. This neural network requires less training 

data because the problem at hand is fundamentally clear in terms of processing; there are no 
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complex edge detections required. All the neural network has to do is distinguish between 

yellow and white and their locations in the images.  

Acquiring Training Data & Preprocessing (Total of 48 Images) 

 

Key ideas in images for the neural network: 

• Changed background of images to show background does not matter 

• Changed lighting of images to show lighting does not matter 

• Changed tilt of images to show tilt does not matter 

• Did not change order of minerals to show only ordering of minerals matter 

NOTE: The preprocessing was automated using Python scripts to save time. 

The reason the images’ resolutions were reduced was due to the fact that training the network 

would require more time. Although training the network at full resolution would be fine, it 
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would possibly take a few minutes, and this can get cumbersome when refining and tweaking 

the data. We felt predictions could be made just as well at reduced resolution. 

The process of converting to a Base-10 representation of hex #RRGGBB values: 

1. Take individual R, G, B (0 – 255) values of each pixel 

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB) 

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number 

All the data was saved to a .txt file to be trained on later. 

Training & Accuracy of Neural Network 

Because we reduced the resolutions of the images in the preprocessing, training time for the 48 

images was incredibly short: 5-15 seconds.  

After training a successful model, here were our results. 
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As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an 

indication of over-fitting the training data, but the network was able to successfully predict our 

test data, so the network indicates it has not overfitted to the point of inaccuracy. In other 

words, when we gave the network new data, it was able to successfully determine whether the 

gold mineral was in the left, right, or center.  
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Gold Mineral Decision Algorithm 

See engineering notebook entries: C121, C122, C128, C129, C130 

Since our robot was only able to see two minerals on the field, we had to write an algorithm to 

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw 

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on 

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was 

on the right of the 2 right minerals, it would be on the right. 
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Vuforia Listener 

(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.) 

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique 

approach in capturing these events. In Vuforia, there is a class known as the 

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark 

when one knows exactly when they will see a VuMark. However, due to the variable nature of 

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding 

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe 

and efficient way. 

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault 

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the 

methods in the default listener, we realized that there was no convenient method to realize 

when a new VuMark was found, so we modified one of the existing methods to let us know 

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be 

notified properly.  

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program 

would work consistently on multiple threads while being able to share information between the 

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of 

information between the threads. If we did not, there is the slight chance that when two 

threads modify the same variable at the same time, there could be a loss of information. The 

usage of Atomic variables notifies the robot in the middle of following the path found by the 

Pathfinding Algorithms to stop what it is doing and realign against the VuMark. 
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Text-To-Speech (TTS) 

For additional fun and utility, we incorporated the Google Text-to-Speech technology that 

allows text to be read aloud in a human-like fashion.  

On the field, our robot likes to let us know how it is doing through a variety of phrases, 

including when it is initialized. Certain phrases include:  

• “Initialized Vuforia” 

• “Initialization Complete” 

• “Initialized Gyro” 

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice 

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism 

and loyalty to our team. Certain phrases it uses include: 

• “Go MOE” 

• “Whooo!” 

• “Hi _____” (where _____ may be someone’s name) 

o Note: this is pre-programmed, we have not yet integrated the facial recognition 

technology for the robot to detect people on its own 

Our robot also has a fondness for music, which it may play on or off the field. More than 

anything else, our robot’s personality makes interacting with it more interesting and fun! : ) 
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Introduction 

Throughout the design of our robot, we have kept one universal theme in mind. 
User Friendliness: The measure of how robust, simple, easy to 

maintain, and easy to use a robot is. 

To accomplish this goal of user friendliness in Autonomous and TeleOp, we tried 

to keep the number of important components on the robot (sensors, motors, 

etc...) to a minimum while still vying to accomplishing our goals in mind. The 

result has been a robot that places a greater priority on intricate algorithms than 

sensors.  

Our robot utilizes a good number of sensors, but wherever one can be omitted 

(for example: a camera rather than multiple color sensors), we take that option. 

This results in less environmental variables that can impact robot performance, as 

the robot relies on its algorithms and math to do computation in the place of 

sensors that could sometimes provide faulty data. 

When driving the robot, we try to keep controls as simple as possible in order to 

allow the driver to focus on making important decisions rather than be distracted 

or bothered with controlling the robot. 

Along with programming for the sake of the robot in competition, we have also 

programmed for the sake of learning (such as creating our own Neural Network!) 

to involve ourselves in other forms and kinds of programming. For an explanation 

on our thought process & more experimental procedures, view the Additional 

Summary Information. Also, below most titles will be a listing of notebook pages 

grouped together by what stage in the development process they show. 

The 6 main sections are as follows: 

1. Autonomous Objectives 

2. Sensors Used 

3. Key Algorithms 

4. Driver Controlled Enhancements 

5. Autonomous Program Diagrams 

6. Additional Summary Information  
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Autonomous Objectives 
The following objectives are what we planned for in our robot’s autonomous 

modes. 

Autonomous Routine 
• Landing – dropping off of the lander (30 pts.) 

• Sampling – knocking off the gold mineral (25 pts.) 

• Sampled gold mineral placed in depot (2 pts.) 

• Claiming – dropping the Team Marker in the depot (15 pts.) 

• Parking – ending autonomous in the crater (10 pts.) 

Algorithmic & Programming Objectives 
• Establishing Field Grid & MOEPS (MOE Positioning System) 

• Localization 

• Multithreading 

• Accurate Turning Methods 

• Accurate Pathfinding with Intelligent Algorithms 

o Pathfinding Error Correction 

o “Rotational Symmetry” 

o Realignment 

• Error Correction & Fallback Plan B Routines 

Although not completely relevant in explaining the controls and actions of the 

robot, we included additional algorithms and details in our programming process 

that we felt to be of importance in the Additional Summary Information. 
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Sensors Used 
 

 

Encoders 

2: Encoders placed on motors involved with the robot’s mecanum drive. One encoder is on the 

front-left wheel, while the other is on the front-right wheel. 

1: Encoder placed on the lift motor involved with dropping/hanging. The encoder is used for 

precise, controlled motion of the lift motor. 

1: Encoder placed on the motor controlling the linear slide of our harvester. The encoder is 

used for making sure the slide does not swing out uncontrollably during autonomous, and 

allows for controlled motion during TeleOp. 

Inertial Measurement Unit (IMU) 

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the 

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that 

measures rotation parallel to the ground for accuracy in any turns or rotational movement of 

the robot. 

Logitech Webcam 

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera 

allows for the phone to be safely protected within the robot, making sure that nothing goes 

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks. 
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REV 2m Distance Sensor 

1: REV 2m Distance Sensor placed on the front side of the robot, facing the forward direction. 

The sensor is primarily used for telling distance away from the walls of the field. 

1: REV 2m Distance Sensor placed on the right side of the robot, facing the right direction. The 

sensor is primarily used for telling distance away from the walls of the field. 

Color Sensor 

1: Color sensor placed on the front of the robot, facing the ground to align with lines during 

autonomous. 

Touch Sensor 

1: Touch Sensor placed near the top of the Tetrix channel used for holding the linear actuator 

used in dropping/hanging. The sensor is used for safe and automated resetting of the lift in 

hanging. Since the lift has to have the same starting point across all robot autonomous modes, 

a standard starting point is important. 

Odometry Wheels 

1: Vertical odometry wheel placed on the side of the robot to allow the robot to continually 

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that 

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization) 

1: Horizontal odometry wheel placed on the side of the robot to allow the robot to continually 

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that 

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization) 

.  
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Key Algorithms & Constructs 

Field Grid & MOEPS (MOE Positioning System) 
Conceptualization and implementation: C7, C8, C13, C14 

Due to the importance of the two positioning systems described below in our programming 

structures, we have affectionately coined the term MOE Position System, or MOEPS, to 

describe the systems. 

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To 

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (72, 72). 

A real field is 12ft. x 12ft., and we divided up the field into a 72 x 72 grid, where each MOE unit 

= 2 inches. 

12 feet = 144 inches = 72 MOE units 

Additionally, the corner of the red depot was used as (0, 0) of the grid. Any of the four corners 

could have been used as (0, 0), so it was an arbitrary decision to choose the red depot. 
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To ease our programming, we made a Java class called PointMap to hold all important (x, y) 

points on the field with English names. While programming, we were able to refer to these 

names rather than the actual (x, y) coordinates. The following places were labelled as 

important: 

Lander, Red Side Crater, Blue Side Crater, VuMarks, Field Corners, Sampling At Red Crater, Sampling At 

Blue Crater, Sampling At Red Depot, Sampling At Blue Depot, Red Depot, Blue Depot 

Along with a positional (x, y) global map, we wanted to create an orientational global map to 

establish a consistent angle at any point on the map. The angle map was modeled off of the 

Unit Circle, which was used as a standard for marking angles on the map. 
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Localization 
See engineering notebook entries: C42, C43, C146, C147, C148 

In terms of our programming team, localization means finding out the robot’s exact global (x, y) 

position on the field. In this case, the robot would have to find out its global (x, y) position on 

the MOEPS global field grid (check Defining The Field Grid). To accomplish this, we make use of 

the Vuforia image recognition technology and the REV 2m Distance Sensor. 

VuMark Localization 

When the robot’s webcam 

sees a VuMark, the following 

steps are taken:                                                                                                                  

1. Extrapolate horizontal (x) 

and vertical (y) distance from 

the VuMark using Vuforia                                                                                                              

2. Scale the x, y distance into 

our 2-inch units – this is done 

by multiplying the values by 

the scalar 1/50                                                                                                                      

3. Depending on the VuMark, 

subtract the x, y values as 

appropriate – each VuMark 

has a distinct x, y position on 

the field, so subtract the 

robot’s local x, y position from 

the VuMark from the VuMark’s 

global position 

VuMark Localization on 

the field 
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Distance Sensor Localization 

Localization using the distance sensor is similar to the VuMark Localization method, but is less 

reliable due to inaccuracies and errors that occasionally occur in the distance sensors. It used 

when no VuMarks are available and localization is necessary.  

In this case, the following steps are taken:                                                                         1. Get vertical and 

horizontal distance in inches from wall with distance sensors                                                                         2. 
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Subtract inches from 

wall (x, y) position                                                                         

3. Resulting (x, y) 

coordinate is the 

robot’s global location 

Odometry + 

Gyro 

Localization 

Although the above 

options for 

localization (Vuforia, 

Distance Sensor) are 

robust, they both 

contain one fatal 

flaw: they are not 

universally accessible. To use the above options, the robot either has to be close to a VuMark or 

has to be close to a corner on the field while also being in the correct orientation. 

Then came about the idea of using Odometry Wheels, which allow for continual localization at 

any point on the field.  

Odometry wheels are non-powered wheels bound to an encoder that allow for accurate 

measurement of robot’s absolute movement. Since these wheels are not part of the drive 

train, when the robot drives forward into a wall, for example, the drive train motors would 

register a change in encoder tics while the odometry wheels would remain consistent since 

they only move with the robot. In our robot, we use 2 MA3 encoders and 2 omni wheels for a 

total of 2 odometry wheels. 
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The two odometry wheels on our robot allow for accurate measurement of positional 

movement. Through the usage of the gyro sensor, we are able to do rotational math to figure 

out the robot’s position at all times.  
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To use the odometry wheels reliably, we have to be able to distinguish between rotational 

movement and translational movement. The typical way to solve this issue is through a 

mechanical paradigm, which involves the use of additional odometry wheels opposite to each 

on of importance. By averaging the values of both wheels (positive & negative changes would 

cancel out), one could get an accurate measurement of only translational movement. Applying 

this methodology to our robot, we would have 4 odometry wheels on the robot. Due to the fact 

that we did not have space for 4 odometry wheels, our team has to resort to other options to 

discount rotational movement. 

This has been done through the gyro and a measure we created known as “rotational offset”. 

This “rotational offset” would be used as a subtractor to discount any non-important odometry 

values. By dividing the angle difference (found between each refresh of the odometry wheels’ 

position) over 360, and multiplying by the “rotational offset”, an appropriate offset measure 

can be found for each wheel. 
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 By calibrating & turning a “rotational offset” for each of the two odometry wheels, we can 

accurately discount any rotational motion, allowing only translational movement to be used in 

the calculation of the robot’s position. 

The above graphs show the number of volts that the MA3 encoders showed for a rotation of 

the robot. By using the equations above to estimate the rotational offset for each of the 

wheels, we can effectively & accurately cancel out rotational motion. 
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Multithreading 
Implementation of lift mechanism: C140 

Implementation of realignment: C58, C59 

Multithreading is a technique by which a single set of code can be used by several processors at 

different stages of execution. In other words, a program can have multiple sets of instructions 

running at the same time. With multithreading, the robot is able to do more than one task at 

any given time. Since our robot is trying to accomplish all standard autonomous points, time is 

often cut close to 30 seconds.  

Without the use of multithreading, the robot’s autonomous routine would have to speed up 

its motors significantly to meet the allotted 30 seconds. This speeding up results in less 

accuracy, resulting in an autonomous that is more prone to error.  

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally 

use our own threads or pull from other threads for the following purposes: 

• Bringing down the lift mechanism used for dropping/hanging 

• Pathing algorithm realignment (see Vuforia Listener in Additional Summary Information 

for more details) 

We also used Atomic variables for thread-safe operation. When a global variable is dealt with 

between 2 or more threads, there is always the danger of it leaking data when operations on it 

are done at the same time. Since using a raw variable without synchronization or any other 

standard is considered bad practice, we decided to use Atomic variables for thread-safe 

operation. This way, when communicating between the Main Robot thread and the Vuforia 

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of 

data between the two threads.   

MOE FTC 365 Engineering Notebook — Rover Ruckus

E152



  18 
 

 

   
 

Turning Methods 
Conceptualization and implementation: C31, C32 

Turning in autonomous must be precise to the degree for repeatable results, which is why 

turning is dictated by the IMU sensor built into the REV Expansion Hubs. Instead of turning by 

time, we turn by setting the powers the motors, and simply wait for the IMU to indicate that 

we are within the correct angle.  

Field-Centric Turning & Robot-Centric Turning 

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS), the 

robot turns to a given global angle on the field. 

In robot-centric turning the robot turns to a given angle relative to itself.  

Robot-centric vs. Field-centric Turning: 

 

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric 

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the 

orientation, the robot will always turn to the same 90° mark in field-centric turning. 
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Jump Point Search / A* / Dijkstra’s Pathfinding 

Algorithm 
Conceptualization and implementation of old linear pathfinding algorithm (not 

used on robot): C42, C43 

Conceptualization and implementation: C46, C47 

Implementation and testing: C50, C51 

Debugging and gradual improvements: C55, C56, C58, C59, C64, C76, C93 

Radius and size reductions: C97, C98, C99 

2nd Stage Debugging: C104, C105 

8-Directional Movement: C128, C129 

3rd Stage Testing: C146 

“Rotational Symmetry”: C150, C151 

Introduction 

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its 

destination. In many autonomous pathings, whenever there is a slight disturbance, the 

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot 

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on 

the field and calculates on its own how to reach the destination. 

The A* (pronounced A Star) and Jump Point Search Algorithms are similar to the popular 

Dijkstra’s Algorithm, which is used for finding the shortest paths between nodes in a graph. The 

primary difference between Dijkstra’s and the other two is that the pair utilize a “heuristic 

function”, or an approximation function, to approximate a faster solution to Dijkstra’s 

algorithm. Dijkstra’s algorithm checks many more cases than the A* Algorithm, therefore taking 

longer to arrive at a similar answer. Since the field we are using is 288x288 (82944) nodes, we 

wanted to guarantee that processing speed would be fast. The algorithms commonly deal with 

graphs shown like the one below, but had to be specially adapted in our case to work with a 2D 

grid. 

Visual representation of traditional graph in computer science: 
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To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity 

(when using lists) of O(N2) where N = number of nodes on the graph, while A* generally has a 

time complexity of O(bd), where b = branching factor and d = depth of the solution on the 

search tree. However, both of these algorithms have a very slow runtime in certain 

circumstances, taking over 20 seconds to run. This is unacceptable when run in autonomous, 

which only has a period of 30 seconds. The Jump Point Search algorithm is an optimized version 

of the A* pathfinding algorithm that consistently brought our runtime below 2 seconds.  

Note that the time complexity of A*/Jump Point Search is worse when using a very expensive 

heuristic cost function, but we are using the simple Euclidean distance, or the distance formula:  

 

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B. 

The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and 

Northwest. 

Setup 

To utilize the pathfinding algorithms, we needed to first setup a graph. To accomplish this, we 

took a 2D image of the field from Game Manual 2. After that, we wrote a Python script (utilizing 

the PIL imaging library) to go through the image, converting it to points we deemed as barriers 

(white) and points we deemed as free space the robot could travel on (black). This conversion 

was done through a color-based threshold. In essence, the gray parts of the map were free 

space while the other colors were barriers. The output was an image with the converted points 

as well as a 288x288-dimensional array that we would be able to use as our graph for the 

pathfinding algorithms. Also, the image was flipped because we wanted [0,0] of the 2D array to 

be the corner of the red depot, and [287,287] of the 2D array to be the corner of the blue 

depot. 
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Mapped FTC Field (Visual Representation of Array) 

 1 (or white) = point a robot cannot travel on 

 0 (or black) = point a robot can travel on 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E156



  22 
 

 

   
 

 

The original conversion had some errors, because places (depot, lines near the lander, etc...) were 

marked in white when they should have been open space. To fix this, we manually changed some values 

in the array. Since most of the conversion work was done by the Python script, this only took a few 

minutes. 

The above image is what the output array looked like visually. The barriers shown in the image above 

are represented by 1s, while the free space shown in the image above are represented by 0s.  

Implementation 

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that 

we wrote the algorithm correctly and be able to make predictions on robot movements, we made a 

simulation to show the pathfinding algorithm’s path from any Point A to Point B visually: 

MOE FTC 365 Engineering Notebook — Rover Ruckus

E157



  23 
 

 

   
 

Initial Simulation

 

As complications with the algorithm increased, there was a need for a better simulation that more 

accurately depicted the algorithm in action. Below is a screenshot of an active simulation that shows the 

the robot (the green square), step by step, moving through the field. 

Screenshot of Final Simulation 

Video of live simulation: https://1drv.ms/v/s!AqOPfHs4_986ihlsFJLdiAYHtxG2 
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To now use the algorithm in practice, we had to convert the results into a usable format by writing an 

algorithm to do so. 

Path Conversion Algorithm 

(Input) - Original Pathfinding Results: 
A series of points describing each point to go 
from point A to point B. 
 
For example, getting from (0,0) to (5,5) could be: 
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)  
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) --> 
(5, 4) --> (5, 5) 
 

(Output) - Usable Results: 
The number of inches in each direction the robot 
has to go, in order (each unit is 2 inches). 
 
For example, getting from (0,0) to (5,5) could be: 
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2 
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2 
in.  
--> FORWARD 8 in. 

 

The robot first turns towards the 90° mark described in the MOEPS global angle map (the direction 

facing the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated 

into movements for the robot based on encoder ticks. The result of this extensive process is a robust 

and repeatable movement system that allows the robot to figure out its own path when given two 

points on the field. This simplifies the process of adjusting and programming autonomous, as well as 

allowing for a more robust and dynamic movement system.  

Pathfinding Algorithm Error Correction 

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few 

issues we had to fix in order of importance. 
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1. The A* algorithm treated the robot as a single (x, y) point on the global 72x72 grid while 

the robot actually comprised at least a circle of many points with radius about 10 inches. 

This led to the edges of the robot crashing into parts of the field (lander, crater, 

sampling, etc...) while its center thought it was following the pathfinding algorithms as a 

single small point.  

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end 

destination due to slight turning while making up, down, left, and right movements. 

Error #1 – Size Corrections 

Conceptualization and implementation: C55, C97 

Second iteration: C98, C99 

To fix this error, we modified the size of the robot in the algorithms. Instead of treating the 

robot as a single point, we treated it as a collection of multiple points – when put together, 

these points would form the robot rather than one small point. 

 

Error #2 – Turn Corrections 

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A* 

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A* 

algorithm.  

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct 

angle by again utilizing the gyro to turn back into position.  

“Rotational Symmetry” 
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Conceptualization and Implementation: C150, C151 

Another feature that we added to the pathfinding algorithm is the idea of “rotational 

symmetry”. In other words, a given set of output instructions can be rotated by certain number 

of degrees while still preserving the relative directions of each movement. 

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of 

robot movements. Since moving forwards and backwards is always faster than strafing, 

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and 

rotate the pathing instructions. The robot can then quickly turn and apply the rotated 

instructions to allow for more forwards and backwards movements, resulting in a more 

robust movement. 

Examples of rotations done on set of output instructions: 

 

The algorithm is accomplished by setting a numerical value to each of the directions in 

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This 

simple numbering pattern makes rotation much simpler than writing each direction’s rotation 

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the 

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes 

2). 
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Visualization of Direction to Number mapping, along with degrees associated with rotations: 

 

This system’s simplicity becomes apparent when put into practice. For example, if an 

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it 

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value, 

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90° 

clockwise rotation from North. 

Realignment 

Conceptualization and Implementation: C58, C59 

As there is always a chance for error, such as another robot or debris in the way of a robot, a 

given robot might be knocked out of its planned path. This is another application for the 

Pathfinding Algorithms. During the course of following a path from the algorithm, the robot is 

always on the lookout for a new VuMark. (see Vuforia Listener in Additional Summary 

Information) If its camera sees one, it stops the current path it is on and restarts its pathing at 
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the new VuMark. If the robot ever gets knocked off of its given path and fulfils the chance that 

it sees a new VuMark, the robot is able to get back on path. 

The diagram below illustrates this process: 

  

1. The robot localizes off of the Rover VuMark to figure out its (x, y) point 

a. Pathfinding Algorithms calculate a path to the destination (#3) 

b. Robot follows the pathing with encoders (blue arrows) 

2. The robot is knocked off of its pathing by debris 

a. A new VuMark is seen and the robot stops its original pathing (blue 

arrows) and relocalizes, figuring out its new (x, y) point 

b. Pathfinding Algorithms calculate a path to the destination (#3) 

c. Robot follows the pathing with encoder (purple arrows) 

3. Destination is reached 
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Error Correction & Fallback Plan B Routines 
Throughout autonomous, there is opportunity for plenty of error to occur. Since a fundamental 

goal of autonomous is to have consistent, reproducible results, we try to better handle some 

errors that may result in a deviation from any planned autonomous route. 

• Turn Corrections 

• Distance Sensor Fallback 

Turn Corrections 

Implementation: C58, C59 

In many of the routines and paths taken during autonomous, due to the nature of our 

mecanum wheels and the weight distribution of the robot, the robot gradually turns out of 

place. For example, when strafing normally for a period of 5 seconds, the robot could possibly 

turn 3° away from its starting angle. Over time, this error accumulates, and when sufficient, 

results in a faulty autonomous. To cut back on this, we define a given angle error range for any 

non-turning movement in autonomous. If the robot deviates from this error range, it interrupts 

what it is doing to turn back into proper position. 

The diagram below shows the turn correction process. 

 

Distance Sensor Fallback 

Due the occasionally unreliable nature of the distance sensors, there is a need for a fallback 

when they produce errors. When getting readings in the middle of autonomous, a distance 

sensor sometimes gives wildly out of range readings or errors. To fix this, we add a fallback. If 
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the sensor does not give reasonable values within 2 seconds, the robot uses a preprogrammed 

point to plug into the Pathfinding Algorithms rather than a more accurate point from the 

distance sensors. 
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Pure Pursuit Controller 
With the creation of our pathfinding algorithms (see sections above), we were running into 

issues on how to properly follow the points the pathfinding suggested. Our original approach 

was to follow the points directly, meaning that the robot would directly travel one of eight 

directions. (North, East, Southeast, etc...). 

Instead, through the use of the Pure Pursuit Controller, we can smoothly follow points with a 

Tank Drive chassis. Although we have a Mecanum chassis, it can be adapted into a Tank Drive 

chassis when ignoring its strafing capabilities. Additionally, disregarding the use of strafing will 

allow the robot’s movements to be more consistent, as strafing has more variable motion. 

To be able to use the Pure Pursuit Controller, the following prerequisites must be met: 

• Continual localization (or knowing exact x,y location on the field at any moment) 

o We accomplished this through odometry wheels  

• Ability to accurately set velocities of wheels 

o We accomplished this through having encoders on all 4 drive wheels & using 

velocity PIDs for each one 

• Path to follow 

o We accomplished this through two ways: 

o 1. Predefined route 

o 2. Jump Point Search pathfinding algorithm for dynamic pathing 

Through these prerequisites, Pure Pursuit is able to accurately correct itself whenever the robot 

deviates from the given path while still following the given path accurately. 

Before doing Pure Pursuit in TeleOp, we also ran simulations to make sure that it worked. A 

picture of the simulation is seen below: 
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Path Following 

The initial steps Pure Pursuit takes are as follows: 

 

1. Take in a set of points – this is known as the pathing (blue line) 

2. Inject in additional points between the given points (blue line) 

3. Smooth all the points (red line) 
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Pathfinder – Development of Automated Guided Vehicle for Hospital Logistics - Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/Illustration-of-Pure-Pursuit-algorithm-principle-Knowing-the-current-robot-location-

and_fig6_319714221 [accessed 20 Apr, 2019] 

After establishing a smoothed path to follow, the next general steps are: 

1. Find the closest point on the pathing to the robot’s current position 

2. Use the next point on the pathing to establish a line with the closest point 

3. Using the robot’s current position and a lookahead distance, draw a circle around the robot and 

find its intersection with the line in #2 – this intersection will be known as the lookahead point 

4. Using the lookahead point, calculate the robot’s signed (+/-) curvature 

a. This signed curvature value lets the robot know how much to turn by 

5. Using the curvature, calculate the velocity for the left side & right side of the robot 

6. Apply the velocity to the wheels  

7. REPEAT STEPS 1-6 until the robot reaches the final destination 

When calculating the velocity to apply to the wheels, Pure Pursuit needs to know the robot’s maximum 

velocity. We measured this in ticks/time, which we then converted into our own custom units that we 

used for Pure Pursuit. 
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The orange line above shows the max velocity of the robot. 

Constants 

For Pure Pursuit to work properly, the following constants have to be tuned accordingly: 

Lookahead Distance: How far the robot looks ahead from its current position for a point to follow. (and 

calculate curvature from) 

 

As seen above, a small lookahead distance (small purple circle) results in short, choppy movements of 

the robot when following a path, while a large lookahead distance (larger purple circle) results in 
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overgeneralized movements of the robot when following a path. A large lookahead distance might be 

dangerous in that it may hit a mineral since it cuts corners on turns too heavily. A proper lookahead 

distance will find a balance that allows the robot to accurately follow a path. 

Max Velocity: The maximum velocity the robot can move at. 

Turning Constant: How sharply the robot should turn  

Smoothing A / Smoothing B / Smoothing Tolerance: These all control how closely the smoothing should 

follow the given path. In other words, whether the curves should closely fit the turns or generalize and 

approximate the turns instead. 

Track Width: The horizontal width of the robot, that helps in the calculation of turns for the robot. 

Needs to be calibrated slightly higher than the actual width because turns are important for the Rover 

Ruckus game. 

Overall, the Pure Pursuit Controller allows for fast, precise, and accurate autonomous path following. 
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Sampling Algorithm 
Our team tried using a variety of sampling methods, including the official TensorFlow neural 

network included in the SDK, creating our own neural network (see Additional Summary 

Section), and OpenCV for color detection. However, one key flaw with all of these methods was 

inconsistency. Even though the official TensorFlow network worked most of the time, we found 

that when placed on a competition field with a yellow background (like a gym floor), gold 

minerals were sometimes improperly recognized. This led to complications during 

competitions. Due to the flaws with the official TensorFlow network, our robot often picked the 

wrong mineral to sample. 

To solve this issue, we wrote our own custom algorithm for the sake of sampling. 

Steps: 

1. Take camera data from Webcam  

Example of camera data 

 

2. To remove any small splotches of yellow in the background (or any other strange color), 

reduce the resolution of the image. 

Reduced resolution of original image 
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3. Convert each pixel from RGB (Red, Green, Blue) color scheme to HSV (Hue, Saturation, 

Value) color scheme. Disregard any pixels without a high enough saturation value (< 0.5).  

Visualization of image after pixels below HSV threshold are removed. 

 

4. Compare amount of gold pixels in left and right side of image. The side that contains more gold 

pixels is considered the location of the gold sampling mineral. If both sides have less than 2 gold 

pixels, then the gold mineral is considered to be in the left location. (see Gold Mineral Decision 

Algorithm in Additional Summary Section) 
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Driver Controlled Enhancements 

Adjustable Field-Centric Movement 
Conceptualization and implementation: C130, C131, C141 

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this, 

we are able to use field-centric motion rather than robot-centric motion. For the ease of the 

driver, we make all movements relative to the field rather than relative to the robot.  

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y 

 

This diagram represents the rotation of axes that underlies the principles in field centric 

movement. The Θ is taken from the IMU, so that angle measurements are exact in the field-

centric motion. Inputs for x’ and y’ are taken from the left joystick, and the right joystick x 

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a 

custom 0° point for the robot. 

In the below diagram, the arrows indicate which direction the wheel turns when given a positive value 

for FWD (forward), STR (strafe), or ROT (rotation). 
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The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so 

that field-centric movement occurs. 

Assisted TeleOp 

Our robot uses “Assisted TeleOp,” in which the robot performs a series of actions in one press 

of a button.  

To make our Assisted TeleOp functions adaptable, we created an AssistedTeleOpManager class 

that takes in an AssistedConfig. This allows us to simply write a configuration for an automated 

task, immediately and quickly integrating it into our code. 

Each of our Assisted TeleOp configs uses a progress variable that can be increased or decreased 

to control which stage of action it belongs to. This brings flexibility into the AssistedTeleOp, 

since the progress variable could be automatically increased or be controlled by a single 

joystick. This heavily simplifies complex motions that would otherwise require many controller 

inputs. 
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Looking at the diagram above, the manager abstracts much of the logic of progressing through 

an Assisted TeleOp routine. By using the manager, moving forwards and backwards with an 

assisted routine becomes very simplified. All the programmer that uses the manager has to do 

is set the progress variable that controls the motion of the robot. 

This infrastructure also rapidly speeds up development of Assisted TeleOp routines, since the 

programmer only has to focus on the logic of the Assisted TeleOp, not the mundane transitions 

between stages of Assisted TeleOp. 

For example, our transfer mechanism, which sends the minerals from the harvester to the 

dispenser (and involves complex movements), can use this infrastructure to manage progress 

through stages. 

Lander Based Movement 
Conceptualization and implementation: C141 

Our robot also has “lander specialized” movement that allows for fine turning before hanging 

the robot. The D-pad allows for smaller adjustments in four-directional movement 

corresponding to the four buttons on the D-pad. Also, the bumpers allow for smaller 

adjustments in turning to fix orientation before raising the lift to hang. 
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Controls 
Gamepad 1 

Left Joystick:  

Left Joystick Down: Toggle between field-centric and robot-centric movement 

Right Joystick Left, Right: Turn robot  

A: Toggle dispenser orientation towards crater or within robot 

X: Toggle dispenser orientation up or down 

B: Toggle end game mode 

Y: Reset 0° point (forward heading) for field-centric movement 

Left & Right Triggers: Raise and lower hanging lift 

Left & Right Bumpers: Fine turning (see Lander Based Movement) 

D-Pad: (see Lander Based Movement) 

UP → Move slowly forward 

DOWN → Move slowly backward 

LEFT → Strafe slowly left 

RIGHT → Strafe slowly right 

Gamepad 2 

Left Joystick Click: Open and close intake gate & lower harvester servo 

Left Joystick: Extend and retract harvester linear slide 

Left & Right Triggers: Controls green intake wheel that brings in minerals 

D-Pad: (see Lander Based Movement) 

UP → Move slowly forward 

RIGHT → Strafe slowly right 
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Autonomous Routines 
Conceptualization and testing of routine: C76 

Iterative improvements, testing, and debugging: C84, C85 

Testing environment fabrication: C104 

2nd Stage Iterative improvements, testing, and debugging: C105, C106, C121, C122 

Testing and evaluations: C140, C141, C145 

 

The image above represents our autonomous routine for all possible starting points. Regardless 

of starting point, our autonomous strives to accomplish delatching, sampling, depositing team 

marker, and parking. We plan on executing the following steps for each autonomous: 
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1. Landing & Detecting gold mineral 

2. Travelling to and knocking off gold mineral 

3. Travelling to depot 

4. Deposit the Team Marker and leave gold mineral 

5. Travel to crater & extend arm into crater 

Initialization 

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map. 

2. Initialize REV IMU sensor  

3. Initialize Vuforia 

4. Reset Crater Extension Arm to position 1 

5. Have robot say “Finished initialization” through speakers to doubly confirm initialization 

Steps 

1. Landing & Detecting gold mineral (30 pts.) 

1. Use linear actuator to move lift up for given # of encoder tics 

a. The robot touches the floor and the claw goes above the top of the handle on 

the lander 

2. Using multithreading, lower the lift back to its starting position 

a. (see Multithreading in Key Algorithms) 

b. The program continues on without waiting for the process to finish because of 

the multithreading 

3. Turn ~70° to see 2 minerals and decide which is gold 

a.  (see Sampling Algorithm in Key Algorithms) 

4. The robot turns the appropriate # of degrees to face the gold mineral in left, right, or 

center 

2. Landing & Detecting gold mineral (25 pts.) 

1. Move forward appropriate # of inches to knock off gold mineral from its starting 

position 

2. Continue moving forward to safely clear other 2 silver minerals 

3a. Travelling to depot (Depot Start Point) 

1. Turn appropriate number of degrees to face VuMark (Rover/Moon) 

2. Move forward appropriate # of inches to read data from the VuMark (distance, angle, 

etc...) 

3b. Travelling to depot (Crater Start Point) 
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1. Turn appropriate number of degrees to face the depot 

2. Move forward appropriate # of inches to reach the depot 

3. Localize and figure out (x, y) position on the MOEPS global field grid by using Vuforia 

4. Calculate and follow path to depot using Pathfinding Algorithms 

4. Deposit the Team Marker (15 pts.) – If Depot Start Point, deposit 

gold mineral in depot (+2 pts.) 

1. Turn appropriate # of degrees for front of robot to face the front/back wall 

2. Localize and figure out (x, y) position on the MOEPS global field grid by using distance 

sensors 

a. (See Distance Sensor Localization in Localization) 

b. If the distance sensors have an error in measurement, fallback to Plan B 

3. Turn appropriate number of degrees for left side of robot to face corner of field 

4. Drop off Team Marker 

5. Calculate path to crater using Pathfinding Algorithms 

a. Plan A: Use (x, y) position from distance sensors 

b. Plan B: Use default (x, y) position as an estimate – less accurate than Plan A 

c. (see Jump Point Search/A*/Dijkstra’s Pathfinding Algorithms) 

5a. Travel to crater & extend arm into crater (10 pts. – Depot Start 

Point) 

1. Turn ~90° right for the back to face the crater 

2. Apply 90° rotation to pathfinding algorithm results to fit new robot orientation 

a. (see “Rotational Symmetry” in  Jump Point Search/A*/Dijkstra’s Pathfinding 

Algorithms) 

3. Follow pathing to reach crater on other alliance’s side 

4. Extend arm 

5. Drive backwards to guarantee arm is in crater 

5b. Travel to crater & extend arm into crater (10 pts. – Crater Start 

Point) 

6. Follow pathing to reach crater  

7. Extend arm 

8. Drive backwards to guarantee arm is in crater 
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Additional Summary Information 

Creating An Artificial Neural Network (ANN) 
Conceptualization and implementation: C110, C111, C112, C113, C114, C115 

Before the integration of TensorFlow Lite into the official FTC App, we created a neural network 

with TensorFlow that could distinguish the left, center, or right position of the gold in the 

sampling minerals.  

Choosing the Correct Structure 

We decided to go with a deep feed-forward (DFF) neural network with backpropagation, a 

commonly used technique to train a neural network based around gradient descent.  

 

There are 1734 inputs from the 1734 pixels in each of our input images, and 1000 neurons in 

each hidden layer. The final output has 3 possibilities. This neural network requires less training 

data because the problem at hand is fundamentally clear in terms of processing; there are no 
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complex edge detections required. All the neural network has to do is distinguish between 

yellow and white and their locations in the images.  

Acquiring Training Data & Preprocessing (Total of 48 Images) 

 

Key ideas in images for the neural network: 

• Changed background of images to show background does not matter 

• Changed lighting of images to show lighting does not matter 

• Changed tilt of images to show tilt does not matter 

• Did not change order of minerals to show only ordering of minerals matter 

NOTE: The preprocessing was automated using Python scripts to save time. 

The reason the images’ resolutions were reduced was due to the fact that training the network 

would require more time. Although training the network at full resolution would be fine, it 
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would possibly take a few minutes, and this can get cumbersome when refining and tweaking 

the data. We felt predictions could be made just as well at reduced resolution. 

The process of converting to a Base-10 representation of hex #RRGGBB values: 

1. Take individual R, G, B (0 – 255) values of each pixel 

2. Convert R, G, B values into one hexadecimal (base-16) number (#RRGGBB) 

3. Take hexadecimal number #RRGGBB into a decimal (base-10) number 

All the data was saved to a .txt file to be trained on later. 

Training & Accuracy of Neural Network 

Because we reduced the resolutions of the images in the preprocessing, training time for the 48 

images was incredibly short: 5-15 seconds.  

After training a successful model, here were our results. 
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As shown on the image, the accuracy is 100% on our 48 images. The loss of 0.0 might be an 

indication of over-fitting the training data, but the network was able to successfully predict our 

test data, so the network indicates it has not overfitted to the point of inaccuracy. 

However, when put into practice, this neural network had decent accuracy (~60%), but 

definitely not do the point needed for reliability in autonomous..  
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Gold Mineral Decision Algorithm 

See engineering notebook entries: C121, C122, C128, C129, C130 

Since our robot was only able to see two minerals on the field, we had to write an algorithm to 

figure out which one is gold. To accomplish this, we guaranteed that the two minerals we saw 

would be the 2 right minerals out of the 3 in sampling. If the 2 were silver, the gold would be on 

the left. If the gold was the left of the 2 right minerals, it would be on the center. If the gold was 

on the right of the 2 right minerals, it would be on the right. 
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Vuforia Listener 
(For the purpose of this, see Realignment in A* Pathfinding Algorithm & Dijkstra’s Algorithm.) 

To be able to retrieve the exact moment a Vuforia tag is seen by the camera, we took a unique 

approach in capturing these events. In Vuforia, there is a class known as the 

VuforiaTrackableDefaultListener. Normally, this class is called to check and retrieve a VuMark 

when one knows exactly when they will see a VuMark. However, due to the variable nature of 

our implementation of the A* and Dijkstra Pathfinding Algorithms (see A* Pathfinding 

Algorithm & Dijkstra’s Algorithm), there is a need to know when a VuMark is found in a safe 

and efficient way. 

This approach creates a class called MOEListener that extends the VuforiaTrackableDefault 

Listener, of which is used instead of the VuforiaTrackableDefaultListener. When overriding the 

methods in the default listener, we realized that there was no convenient method to realize 

when a new VuMark was found, so we modified one of the existing methods to let us know 

when a new VuMark was found. This way, in the event of a new VuMark, our robot would be 

notified properly.  

Since Vuforia runs on a separate thread, there needed to be way to guarantee that the program 

would work consistently on multiple threads while being able to share information between the 

two. For this purpose, we utilized Atomic variables in Java for thread-safe sharing of 

information between the threads. If we did not, there is the slight chance that when two 

threads modify the same variable at the same time, there could be a loss of information. The 

usage of Atomic variables notifies the robot in the middle of following the path found by the 

Pathfinding Algorithms to stop what it is doing and realign against the VuMark. 

  

MOE FTC 365 Engineering Notebook — Rover Ruckus

E187



  53 
 

 

   
 

Simulations 
 

Throughout the creation and testing of our code, we have used simulations to quickly and test the 

efficacy of our algorithms before putting them on the actual robot.  

We have run simulations in a 3D environment with the Unity engine. 

 

Additionally, we have run simulations for the testing of our Pure Pursuit Controller and Pathfinding 

Algorithms. 
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Text-To-Speech (TTS) 
For additional fun and utility, we incorporated the Google Text-to-Speech technology that 

allows text to be read aloud in a human-like fashion.  

On the field, our robot likes to let us know how it is doing through a variety of phrases, 

including when it is initialized. Certain phrases include:  

• “Initialized Vuforia” 

• “Initialization Complete” 

• “Initialized Gyro” 

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice 

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism 

and loyalty to our team. Certain phrases it uses include: 

• “Go MOE” 

• “Whooo!” 

• “Hi _____” (where _____ may be someone’s name) 

o Note: this is pre-programmed, we have not yet integrated the facial recognition 

technology for the robot to detect people on its own 

Our robot also has a fondness for music, which it may play on or off the field. More than 

anything else, our robot’s personality makes interacting with it more interesting and fun! : ) 
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