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Introduction 
Preliminary program creation: C19  

Programming laptop setup: C32  

Template for tests: C45 

Github:  C97 

Throughout the design of our robot, we have kept one universal theme in mind. 
User Friendliness: The measure of how robust, simple, easy to 
maintain, and easy to use a robot is. 

To accomplish this goal of user friendliness in Autonomous and TeleOp, we tried 
to keep the number of important components on the robot (sensors, motors, 
etc...) to a minimum while still vying to accomplish our goals in mind. The result 
has been a robot that places a greater priority on intricate algorithms than 
sensors.  

Our robot utilizes a good number of sensors, but wherever one can be omitted 
(for example: a camera rather than multiple color sensors), we take that option. 
This results in less environmental variables that can impact robot performance, as 
the robot relies on its algorithms and math to do computation in the place of 
sensors that could sometimes provide faulty data. 

When driving the robot, we try to keep controls as simple as possible in order to 
allow the driver to focus on making important decisions rather than be distracted 
or bothered with controlling the robot. 

Along with programming for the sake of the robot in competition, we have also 
programmed for the sake of learning (such as creating our own Neural Network!) 
to involve ourselves in other forms and kinds of programming. For an explanation 
on our thought process & more experimental procedures, view the Additional 
Summary Information. Also, below most titles will be a listing of notebook pages 
grouped together by what stage in the development process they show. 
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The 6 main sections are as follows: 

1. Autonomous Objectives 
2. Sensors Used 
3. Key Algorithms & Constructs 
4. Driver Controlled Enhancements 
5. Autonomous Program Diagrams 
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Autonomous Objectives 
The following objectives are what we planned for in our robot’s autonomous 
modes. 

Autonomous Routine 
● Stone Delivery x1 – dropping off one skystone (10 pts.) 

● Repositioning – moving foundation to the building zone (10 pts.) 

● Navigating – parking over central tape (5 pts.) 

● Placing x1 – placing skystone in foundation (4 pts.) 

Algorithmic & Programming Objectives 
● Establishing Field Grid & MOEPS (MOE Positioning System) 

● Localization 

● Multithreading 

● Accurate Turning Methods 

● Accurate Pathfinding with Intelligent Algorithms 

o Jump Point Search 

o “Rotational Symmetry” 

o Realignment 

● Positional Proportional-Integral-Derivative (PID) Control 
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Sensors Used 
Chassis requirements: C28 

Foundation detection: C29 

Encoders 

4: Encoders placed on motors involved with the robot’s mecanum drive—front left, front right, 

back left, and back right.  

1: Encoder placed on the lift motor that controls the stone lift, allowing for more accurate and 

precise vertical control. 

Inertial Measurement Unit (IMU) 

1: IMU build into the REV Expansion Hub. This IMU is effectively a gyro sensor, with the 

capability to measure rotation on 3 axes. We primarily use the horizontal axis, or the one that 

measures rotation parallel to the ground for accuracy in any turns or rotational movement of 

the robot. 

Logitech Webcam 

1: Logitech Webcam used in the front of the robot. Using this rather than a phone camera 

allows for the phone to be safely protected within the robot, making sure that nothing goes 

wrong during the match. The Logitech Webcam is used for recognizing the Vumarks and 

aligning with the foundation. 

Intel Realsense Tracking Camera T265 

1: Intel Realsense Tracking Camera T265 used for localization and as a gyro. Using internal 

algorithms acting on data provided by two fisheye lenses and one IMU, the camera provides 

accurate positional and rotational data. 

Limit Switch 

1: Limit switch placed near the bottom of the lift to allow for hard resetting of the lift. In case 

the lift slips and encoder ticks are made to be inaccurate, the limit switch acts as a safety. 

Odometry Wheels 
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1: Vertical odometry wheel placed on the side of the robot to allow the robot to continually 

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that 

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization) 

1: Horizontal odometry wheel placed on the side of the robot to allow the robot to continually 

localize (know its absolute x,y position). An odometry wheel is an unpowered wheel that 

moves only when the robot moves on the floor. (See more in Odometry + Gyro Localization) 

.  
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Key Algorithms & Constructs 

Field Grid & MOEPS (MOE Positioning System) 
PID and stereo-distance algorithms: C54 

Field coordinate system: C88 

Due to the importance of the two positioning systems described below in our programming 

structures, we have affectionately coined the term MOE Position System, or MOEPS, to 

describe the systems. 

Many of the following approaches and techniques we use rely upon a grid of (x, y) points. To 

form this grid, we divided up the field into a grid on the Cartesian plane, from (0, 0) to (288, 

288). 

A real field is 12ft. x 12ft., and we divided up the field into a 288 x 288 grid, where each MOE 

unit = 0.5 inches. → 12 feet = 144 inches = 288 MOE units. 

Additionally, the corner of the red building zone was arbitrarily chosen as (0, 0) of the grid. 
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Along with a positional (x, y) global map, we wanted to create an orientational global map to 

establish a consistent angle at any point on the map. The angle map was modeled off of the 2D 

Euler Angle system, which tarts 0 at the top and rotates clockwise for positive change. 
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Localization 
In terms of our programming team, localization means finding out the robot’s exact global (x, y) 

position on the field. In this case, the robot would have to find out its global (x, y) position on 

the MOEPS global field grid (check Defining The Field Grid ). To accomplish this, we make use of 

odometry wheel and an Intel SLAM T265 camera. 

Intel Simultaneous Localization and Mapping (SLAM) T265 Camera 

PID and stereo-distance algorithms: C54 

Camera and position : C77 

C++ and camera : C87 

Intel camera and phone connections : C108 

Intel testing: C113 

Better quaternion calculations: C118 

The Intel Realsense Tracking Camera T265 is a Simultaneous Localization and Mapping (SLAM) camera. 
SLAM algorithms aim to construct an internal map of their surroundings and use that map to determine 
its position. Using two black and white fisheye lenses and one internal IMU, the camera has an internal 
processor with algorithms that perform said SLAM functions.  

 

This, in turn, produces position data on the x (horizontal), y (vertical), and z (depth-wise)  axes along 
with rotational data (orientation) . Traditionally, the camera has been used for drones and other similar 
applications, but we have found use for it in our robot. 

 

  
 

MOE 365 FTC ENGINEERING NOTEBOOK — SKYSTONE 2019-20

F11



 

  12

 

 

The above image shows the views from the black and white fisheye lenses of the camera (bottom-left 
and top-right corners), which is used to determine position. 

 

This shows a simplified view of the camera’s tracking of position over time. The green and yellow lines 
show the previous positions of the camera in a 3D field.  

In terms of this year’s match, three data points from the camera come in handy: 

● Horizontal position (x-axis) 
● Depth-wise position (z-axis) 
● Rotational position (θ) 

The vertical position (y-axis) is not needed because our robot *hopefully* does not fly during the match. 
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Another issue we had to resolve was the conversion of the camera’s axis to the field’s axis. As shown 
above, the steps are as follows: 

1. Calculate (x, y) offsets front field axis to robot (camera) axis 
2. Rotate camera axis onto robot axis 
3. Rotate robot axis to field axis 
4. Add back (x, y ) offsets to the point 

After this correction method, we were able to successfully use the camera to determine the absolute 
position  of the robot on the field. 

Odometry + Gyro Localization 

Servos and odometry pods : C88 

Odometry programs : C92 

Testing odometry: C101 

Problematic odometry pods : C108 

Odometry config : C221 

Odometry values : C225 

Odometry testing : C227 

Although the above SLAM camera is accurate, it is occasionally not perfectly on target. 
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To further increase the accuracy of localization, we constructed odometry wheels, which allow 

for continual localization at any point on the field.  

Odometry wheels are non-powered wheels bound to an encoder that allow for accurate 

measurement of robot’s absolute movement.  Since these wheels are not part of the 

drivetrain, when the robot drives forward into a wall, for example, the drive train motors would 

register a change in encoder tics while the odometry wheels would remain consistent since 

they only move with the robot. In our robot, we use 2 REV Through Bore encoders and 2 omni 

wheels, for a total of 2 odometry wheels. 

The benefit of the REV Through Bore encoders, over the MA3 encoders we used last year, is 

that they are incremental—they continually add on ticks, making odometry more robust than 

before. 

  

The two odometry wheels on our robot allow for accurate measurement of positional 

movement. Through the usage of the gyro sensor, we are able to do rotational math to figure 

out the robot’s position at all times.  
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To use the odometry wheels reliably, we have to be able to distinguish between rotational 

movement and translational movement. The typical way to solve this issue is through a 

mechanical paradigm, which involves the use of additional odometry wheels opposite to each 

on of importance. By averaging the values of both wheels (positive & negative changes would 

cancel out), one could get an accurate measurement of only translational movement. Applying 

this methodology to our robot, we would have 4 odometry wheels on the robot. Due to the fact 

that we did not have space for 4 odometry wheels, our team has to resort to other options to 

discount rotational movement. 

This has been done through the gyro and a measure we created known as “rotational offset”. 

This “rotational offset” would be used as a subtractor to discount any non-important odometry 

values. By dividing the angle difference (found between each refresh of the odometry wheels’ 

position) over 360, and multiplying by the “rotational offset”, an appropriate offset measure 

can be found for each wheel. 
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 By calibrating & turning a “rotational offset” for each of the two odometry wheels, we can 

accurately discount any rotational motion, allowing only translational movement to be used in 

the calculation of the robot’s position. 

The above graphs show the number of volts that the encoders showed for a rotation of the 

robot. By using the equations above to estimate the rotational offset for each of the wheels, we 

can effectively & accurately cancel out rotational motion. 
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Multithreading 
Multithreading is a technique by which a single set of code can be used by several processors at 

different stages of execution. In other words, a program can have multiple sets of instructions 

running at the same time. With multithreading, the robot is able to do more than one task  at 

any given time. Since our robot is trying to accomplish all standard autonomous points, time is 

often cut close to 30 seconds.  

Without the use of multithreading, the robot’s autonomous routine would have to speed up 

its motors significantly to meet the allotted 30 seconds. This speeding up results in less 

accuracy, resulting in an autonomous that is more prone to error.  

Although processes like Vuforia and TensorFlow may run on separate threads, we intentionally 

use our own threads or pull from other threads for the following purposes: 

● Bringing down the lift mechanism used for dropping/hanging 

● Pathing algorithm realignment (see Vuforia Listener  in Additional Summary Information 

for more details) 

We also used Atomic variables  for thread-safe operation. When a global variable is dealt with 

between 2 or more threads, there is always the danger of it leaking data when operations on it 

are done at the same time. Since using a raw variable without synchronization or any other 

standard is considered bad practice, we decided to use Atomic variables for thread-safe 

operation. This way, when communicating between the Main Robot thread and the Vuforia 

thread, we can guarantee that no strange behavior in autonomous occurs because of loss of 

data between the two threads.   
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Turning Methods 
Turning in autonomous must be precise to the degree for repeatable results, which is why 

turning is dictated by the IMU sensor built into the REV Expansion Hubs . Instead of turning by 

time, we turn by setting the powers the motors, and simply wait for the IMU to indicate that 

we are within the correct angle.  

Field-Centric Turning & Robot-Centric Turning 

In field-centric turning, the MOEPS angle map described above (see Field Grid & MOEPS ), the 

robot turns to a given global angle on the field. 

In robot-centric turning  the robot turns to a given angle relative to itself.  

Robot-centric vs. Field-centric Turning: 

 

As shown in the diagram above, the robot turns 90° directly to the right in the robot-centric 

turn, while the robot is turning to the 90° mark in the field-centric turn. No matter the 

orientation, the robot will always turn to the same 90° mark in field-centric turning. 
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Jump Point Search/A*/Dijkstra’s Pathfinding Algorithm 
Prototyping pathing : C118 

Pathfinding and angles: C126 

Generic PID: C132 

Slam camera localization: C137 

Autonomous points: C152 

Introduction 

The purpose of the algorithm is to allow the robot to dynamically figure out how to reach its 

destination. In many autonomous pathings, whenever there is a slight disturbance, the 

autonomous fails to finish. Rather than explicitly giving the robot a path to follow, the robot 

is given an end destination. Through localization, the robot figures out its (x, y) coordinate on 

the field and calculates on its own how to reach the destination. 

The A* (pronounced A Star) and Jump Point Search Algorithms are similar to the popular 

Dijkstra’s Algorithm, which is used for finding the shortest paths between nodes in a graph. The 

primary difference between Dijkstra’s and the other two is that the pair utilize a “heuristic 

function”, or an approximation function, to approximate a faster solution to Dijkstra’s 

algorithm. Dijkstra’s algorithm checks many more cases than the A* Algorithm, therefore taking 

longer to arrive at a similar answer. Since the field we are using is 288x288 (82944) nodes, we 

wanted to guarantee that processing speed would be fast. The algorithms commonly deal with 

graphs shown like the one below, but had to be specially adapted in our case to work with a 2D 

grid. 

Visual representation of traditional graph in computer science: 
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To account for processing speed & time, Dijkstra’s Algorithm has a worse case time complexity 

(when using lists) of O(N 2) where N = number of nodes on the graph, while A* generally has a 

time complexity of  O(b d),  where b = branching factor and d = depth of the solution on the 

search tree. However, both of these algorithms have a very slow runtime in certain 

circumstances, taking over 20 seconds to run. This is unacceptable when run in autonomous, 

which only has a period of 30 seconds. The Jump Point Search algorithm is an optimized version 

of the A* pathfinding algorithm that consistently brought our runtime below 2 seconds.  

Note that the time complexity of A*/Jump Point Search is worse when using a very expensive 

heuristic cost function, but we are using the simple Euclidean distance, or the distance formula:  

 

With the pathfinding algorithms, the robot is able to move in 8 directions to go from point A to point B. 
The directions are labelled as follows: North, Northeast, East, Southeast, South, Southwest, West, and 
Northwest. 

Setup 

To utilize the pathfinding algorithms, we needed to first setup a graph. To accomplish this, we 

took a 2D image of the field from Game Manual 2. After that, we wrote a Python script (utilizing 

the PIL imaging library ) to go through the image, converting it to points we deemed as barriers 

(white) and points we deemed as free space the robot could travel on (black). The output was 

an image with the converted points as well as a 288x288  array that we would be able to use as 

our graph for the pathfinding algorithms. 
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Mapped Skystone Field: The above image is what the output array looked like visually. The barriers (the 
black squares) in the image above are represented by 1s, while the free space (the white squares) in the 
image above are represented by 0s.  

Implementation 

We implemented the algorithm in Java, making a separate class to handle the calculations. To verify that 
we wrote the algorithm correctly and be able to make predictions on robot movements, we made a 
simulation to show the pathfinding algorithm’s path from any Point A to Point B visually: 
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To now use the algorithm in practice, we had to convert the results into a usable format by writing an 
algorithm to do so. 

Path Conversion Algorithm 

(Input) - Original Pathfinding Results: 
A series of points describing each point to go 
from point A to point B. 
 
For example, getting from (0,0) to (5,5) could be: 
(0,0) --> (0,1) --> (1,1) --> (2, 1) --> (3, 1) --> (3, 0)  
--> (4, 0) --> (4, 1) --> (5, 1) --> (5, 2) --> (5, 3) --> 
(5, 4) --> (5, 5) 
 

(Output) - Usable Results: 
The number of inches in each direction the robot 
has to go, in order (each unit is 2 inches). 
 
For example, getting from (0,0) to (5,5) could be: 
FORWARD 2 in. --> RIGHT 6 in. --> BACKWARD 2 
in. --> RIGHT 2 in. --> FORWARD 2 in. --> RIGHT 2 
in.  
--> FORWARD 8 in. 

 

The robot first turns towards the 0° mark described in the MOEPS global angle map (the direction facing 
the Crater/Mars VuMark). The results from the pathfinding algorithm would then be translated into 
movements for the robot based on encoder ticks. The result of this extensive process is a robust and 
repeatable movement system that allows the robot to figure out its own path when given two points on 
the field. This simplifies the process of adjusting and programming autonomous, as well as allowing for a 
more robust and dynamic movement system.  

Pathfinding Algorithm Error Correction 

The pathfinding algorithm worked perfectly well in theory, but in practice, there were a few 

issues we had to fix in order of importance. 

1. The Jump Point Search algorithm  treated the robot as a single (x, y) point on the global 

288x288 grid while the robot actually comprised at least a circle of many points with 

radius about 10 inches. This led to the edges of the robot crashing into parts of the field 

(lander, crater, sampling, etc...) while its center thought it was following the pathfinding 

algorithms as a single small point.  

2. While moving, the robot would turn slightly off angle. It would be not exactly at its end 

destination due to slight turning while making up, down, left, and right movements. 

Error #1 – Size Corrections 

Conceptualization and implementation: C55, C97 

Second iteration: C98, C99 
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To fix this error, we modified the size of the robot in the algorithms. Instead of treating the 

robot as a single point, we treated it as a collection of multiple points – when put together, 

these points would form the robot rather than one small point. 

 

Error #2 – Turn Corrections 

To fix this error, we took the IMU sensor’s horizontal angle before the robot followed the A* 

algorithm. We then constantly tracked the gyro sensor’s angle while the robot followed the A* 

algorithm.  

If the IMU’s angle strayed by more than 2°, the robot self-corrected itself back to the correct 

angle by again utilizing the gyro to turn back into position.  

“Rotational Symmetry” 

Conceptualization and Implementation: C150, C151 

Another feature that we added to the pathfinding algorithm is the idea of “rotational 

symmetry”. In other words, a given set of output instructions can be rotated by certain number 

of degrees while still preserving the relative directions of each movement. 

The purpose of rotational symmetry is to allow for optimizations in accuracy and speed of 

robot movements. Since moving forwards and backwards is always faster than strafing, 

rotational symmetry allows the robot to take a pathing from the Pathfinding Algorithms and 

rotate the pathing instructions. The robot can then quickly turn and apply the rotated 
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instructions to allow for more forwards and backwards movements, resulting in a more 

robust movement. 

Examples of rotations done on set of output instructions: 

 

The algorithm is accomplished by setting a numerical value to each of the directions in 

clockwise order. North all the way around to Northwest is numbered from 0 up to 7. This 

simple numbering pattern makes rotation much simpler than writing each direction’s rotation 

to its right. To rotate a direction, divide the angle needed to rotate by 45° and add it to the 

number. In the case a value goes above 7, it is wrapped back around to start at 0 (ie: 9 becomes 

2). 

Visualization of Direction to Number mapping, along with degrees associated with rotations: 
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This system’s simplicity becomes apparent when put into practice. For example, if an 

instruction says to move the robot North, the direction North’s numerical value is 0. To rotate it 

by 90° clockwise, divide 90° by 45°, which equals 2. The 2 is added to North’s numerical value, 

which results in 0+2 = 2. The 2 corresponds to the East direction, which is exactly a 90° 

clockwise rotation from North.  
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Proportional-Integral-Derivative (PID) Control 
PID and stereo-distance algorithms: C54 

Generic PID: C132 

Slide testing : C194 

Positional PID: C203, C204 

SLAM Initial rotation: C216 

Positional PID testing: C220 

To achieve more stability and control in our movements, we utilized Proportional-Integral-Derivative 
(PID) control loops throughout our robot. 

 

Credit: https://i2.wp.com/upload.wikimedia.org/wikipedia/commons/4/40/Pid-feedback-nct-int-correct.png 

A PID generally works through defining a setpoint, or goal. By measuring the error between the current 
state and setpoint and summing proportion (current error), integral (cumulative error), and derivative 
(change in error)  factors, an output value is reached. This value is subsequently applied to whatever 
process the PID is meant to be used for. By running this process in a loop, incredibly accurate and 
reliable motions or actions can be achieved by the robot. 

We have PIDs used on our stone lift motor, so we may appropriately optimize the lift’s movements while 
still maintaining accuracy and good ramp-up and slow-down rates. 

We have also used PIDs for movement. Instead of PurePursuit, the method used last year that restricted 
us to only tank drive movement, a positional PID control system allows the robot to take advantage of 
its full strafing arsenal. The robot, to reach a destination, can rotate and move in any direction. Done 
successfully, this translates into beautiful, optimized movements where the robot efficiently reaches its 
destination. 
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To have a successful positional PID the following are required: 

● Horizontal PID with tuned proportion (P), integral (I), and derivative (D) constants with output h 
● Vertical PID with tuned proportion (P), integral (I), and derivative (D) constants with output v 
● Rotational PID with tuned proportion (P), integral (I), and derivative (D) constants with output r 
● Conversion method of changing h, v, and r into strafe (STR), forward (FWD), and rotation (ROT) 

values—this is done with field-centric code 
● Pathfinding (done with Jump Point Search) and point injection 

 
However, one downside of the positional PID is that it cannot inherently perform obstacle 

avoidance. For example, take the situation presented in the above image, where the starting 

and ending points are represented in green. Directly applying a PID would result in a crash, 

since the robot would traverse the purple path, hitting the white box. On the other hand, by 

using pathfinding (Jump Point Search) to find a path avoiding the white and injecting points 

along the way, the issue is resolved. The orange path in the image above shows one such path. 

Incrementally applying the positional PID to each set of two points in the path would allow the 

robot to reach its destination quickly and obstacle-free. 
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Skystone Detection 
Skystone Detection: C38 

Pixel filter : C38 

For the Skystone detection algorithm, we decided to use a Logitech Webcam instead of a color 

sensor, a commonly used approach. The color sensor is highly dependent upon external lighting 

conditions, and to combat this issue, significant mechanical effort and positioning is required. 

However, by using a Webcam, we essentially gather many data points that allow us to make 

better decisions; we gather a view of the whole field from a distance. 

 

In the above image, the green represents the external noise in the camera position when autonomous is 
initialized. By cropping the above image to within the blue border (shown below), all the positions of the 
skystones can be determined. 

 

Given the image above, we are able to write a relatively simple algorithm pixel comparison algorithm 
knowing that the image is always the left two skystones.  
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Using this information, we can use the positional PID to travel to the appropriate one, allowing us to 
have a much more robust autonomous. 
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Driver Controlled Enhancements 
Adjustable Field-Centric Movement 
Conceptualization and implementation: C130, C131, C141 

Mecanum calibration: C148 

Drivetrain evaluation: C170 

Since our robot uses a mecanum drive, it is capable of moving in any direction. Because of this, 

we are able to use field-centric motion rather than robot-centric motion. For the ease of the 

driver, we make all movements relative to the field rather than relative to the robot.  

Note: In this diagram x’ = Left Joystick X AND y’ = Left Joystick Y 

 

This diagram represents the rotation of axes  that underlies the principles in field centric 

movement. The Θ is taken from the IMU, so that angle measurements are exact in the 

field-centric motion. :Inputs for x’ and y’ are taken from the left joystick, and the right joystick x 

controls the rotation of the robot. Also, the offset for the IMU is to allow the driver to set a 

custom 0° point for the robot. 
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In the below diagram, the arrows indicate which direction the wheel turns when given a positive value 
for FWD (forward), STR (strafe), or ROT (rotation). 

 

The corresponding values of FLP, FRP, BLP, and BRP are fed into the motors based on controller input so 
that field-centric movement occurs. 

Assisted TeleOp 

Teleop controls, gamepad manager : C156 

Our robot uses “ Assisted TeleOp,” in which the robot performs a series of actions in one press 

of a button.  

To make our Assisted TeleOp functions adaptable, we created an AssistedTeleOpManager class 

that takes in an AssistedConfig. This allows us to simply write a configuration for an automated 

task, immediately and quickly integrating it into our code. 

Each of our Assisted TeleOp configs uses a progress variable that can be increased or decreased 

to control which stage of action it belongs to. This brings flexibility into the AssistedTeleOp, 

since the progress variable could be automatically increased or be controlled by a single 

joystick. This heavily simplifies complex motions that would otherwise require many controller 

inputs. 
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Looking at the diagram above, the manager abstracts much of the logic of progressing through 

an Assisted TeleOp routine. By using the manager, moving forwards and backwards with an 

assisted routine becomes very simplified. All the programmer that uses the manager has to do 

is set the progress  variable that controls the motion of the robot. 

This infrastructure also rapidly speeds up development of Assisted TeleOp routines, since the 

programmer only has to focus on the logic of the Assisted TeleOp, not the mundane transitions 

between stages of Assisted TeleOp. 

For example, our transfer mechanism, which sends the minerals from the harvester to the 

dispenser (and involves complex movements), can use this infrastructure to manage progress 

through stages. 
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Controls 
Teleop controls: C132 

Gamepad 1 

Left Joystick: Move Robot 

Right Joystick Left, Right: Turn robot  

B: Run intake inwards (harvest stone) 

Y:  Reset 0° point (forward heading) for field-centric movement 

Left Trigger: Make robot go faster  

Right Trigger: Run intake outwards (dispense stone) 

Left Bumper: Enable Foundation Servo 

 

Gamepad 2 

Left Joystick Up, Down: Move lift up, down 

Right Stick Up,  Down: Move lift up, down slowly 

B: Toggles grab servo 

Left Bumper: Move outtake servo out 

Right Bumper: Move outtake servo in 
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Autonomous Routines 
General autonomous pathing: C11 

Tweak autonomous code: C207 

Tweak SLAM camera: C211 

Primary Autonomous Pathing (29 pts.) 
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The image above represents our primary autonomous pathing, which assumes that the other 

robot will not interfere with our pathing. In other words, the other robot will stay still. 

1. Detect skystone 

2. Travel to quarry and collect skystone 

3. Travel to foundation 

4. Dispense skystone and grab foundation 

5. Drag foundation to building zone and travel to parking zone 

Initialization 

1. Initialize motors, servos, sensors, and all other devices from the Hardware Map. 

2. Initialize REV IMU sensor  

3. Initialize Intel SLAM T265 camera 

4. Initialize Vuforia 

5. Set all servos to appropriate starting to positions 

 

Steps 

1. Detect skystone position  

1. Use skystone detection algorithm on Webcam input to determine the left, center, or 

right position of the leftmost skystone relative to the robot 

2. Travel to quarry and collect skystone 

1. Path-find and use positional PID to travel to skystone’s position in the quarry 

2. Orient robot with left side parallel to skystones 

3. Strafe left until harvester is aligned with skystone, using x  position to determine 

alignment 

4. Drive forward until skystone is collected, using y position to determine alignment 

3. Travel to foundation (10 pts.) 

1. Path-find and use positional PID to travel to foundation – the skystone has now crosse 

the parking zone 

4. Dispense skystone and grab foundation (4 pts.) 
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1. Align front of robot parallel to the foundation’s left side 

2. Dispense skystone 

3. Grab foundation 

5. Drag foundation to building zone and travel to parking zone (15 

pts.) 

1. Path-find and use turn-restricted positional PID (don’t want to swing around the 

foundation!)  to travel to building zone, dragging the foundation along 

2. Release the foundation 

3. Path-find and use positional PID to travel to parking zone, using Webcam to avoid other robot 

and determine an open position 

 

Alternative Autonomous Pathings 

Foundation Grabbing (15 pts.): In this autonomous, the robot grabs the foundation, dragging it 

back to the building zone and releasing it. Subsequently, the robot travels to the parking zone. 

Parking (5 pts.): In this autonomous, the robot simply parks immediately. This is used in the 

case of calibration, sensor, or alliance conflict issues.  
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Additional Summary Information 
Text-To-Speech (TTS) 
For additional fun and utility, we incorporated the Google Text-to-Speech technology that 

allows text to be read aloud in a human-like fashion.  

On the field, our robot likes to let us know how it is doing through a variety of phrases, 

including when it is initialized. Certain phrases include:  

● “Initialized Vuforia” 

● “Initialization Complete” 

● “Initialized Gyro” 

Over time, hearing these phrases can become cumbersome; however, our robot likes to spice 

things up. When completing certain tasks in autonomous, the robot likes to show its patriotism 

and loyalty to our team. Certain phrases it uses include: 

● “Go MOE” 

● “Whooo!” 

● “Hi _____” (where _____ may be someone’s name) 

o Note: this is pre-programmed, we have not yet integrated the facial recognition 

technology for the robot to detect people on its own 

Our robot also has a fondness for music, which it may play on or off the field. More than 

anything else, our robot’s personality makes interacting with it more interesting and fun! : ) 
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